AdvanceSearch
Volume 40 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
CHEN Zhen-rui, LIU Chao, XIE Yan-chong, PAN Zhi-zhong, REN Shu-bin, QU Xuan-hui. Preparation and research process of high thermal conductivity metal matrix composites[J]. Powder Metallurgy Technology, 2022, 40(1): 40-52. doi: 10.19591/j.cnki.cn11-1974/tf.2021040002
Citation: CHEN Zhen-rui, LIU Chao, XIE Yan-chong, PAN Zhi-zhong, REN Shu-bin, QU Xuan-hui. Preparation and research process of high thermal conductivity metal matrix composites[J]. Powder Metallurgy Technology, 2022, 40(1): 40-52. doi: 10.19591/j.cnki.cn11-1974/tf.2021040002

Preparation and research process of high thermal conductivity metal matrix composites

doi: 10.19591/j.cnki.cn11-1974/tf.2021040002
More Information
  • Corresponding author: E-mail: sbren@ustb.edu.cn
  • Received Date: 2021-04-07
  • Publish Date: 2022-02-28
  • With the increasing power of the electronic device chip, the higher requirements are put forward for the thermophysical properties of the heat dissipation materials. The metal matrix composites as the ideal heat dissipation material, which are composed of the high thermal conductivity and low thermal expansion reinforcement phase and the high thermal conductivity metal, show the high thermal conductivity and the adjustable coefficient of thermal expansion. The research progress of the copper matrix and aluminum matrix composites reinforced by Si, SiCp, diamond, and flake graphite in recent years was summarized in this paper, and the existing problems and future research direction of the metal matrix composites were prospected.
  • loading
  • [1]
    Molina-Jordá J M. Thermal conductivity of metal matrix composites with coated inclusions: a new modelling approach for interface engineering design in thermal management. J Alloys Compd, 2018, 745: 849 doi: 10.1016/j.jallcom.2018.02.092
    [2]
    Mallik S, Ekere N, Best C, et al. Investigation of thermal management materials for automotive electronic control units. Appl Therm Eng, 2011, 31(2-3): 355 doi: 10.1016/j.applthermaleng.2010.09.023
    [3]
    常国, 段佳良, 王鲁华, 等. 新一代高导热金属基复合材料界面热导研究进展. 材料导报, 2017, 31(7): 72 doi: 10.11896/j.issn.1005-023X.2017.07.011Thermal

    Chang G, Duan J L, Wang L H, et al. Thermal boundary conductance of a new generation of high thermal conductivity metal matrix composites: A review. Mater Rev, 2017, 31(7): 72 doi: 10.11896/j.issn.1005-023X.2017.07.011Thermal
    [4]
    任淑彬, 陈志宝, 曲选辉. 电子封装用金属基复合材料的研究进展. 江西科学, 2013, 31(4): 501 doi: 10.3969/j.issn.1001-3679.2013.04.020

    Ren S B, Chen Z B, Qu X H. Research progress on metal matrix composites for electronic packaging. Jiangxi Sci, 2013, 31(4): 501 doi: 10.3969/j.issn.1001-3679.2013.04.020
    [5]
    刘骞. 非连续石墨/铜复合材料的制备与热性能研究[学位论文]. 北京: 北京科技大学, 2015

    Liu Q. Research of Preparation and Thermal Properties of Discontinous Graphite/Copper Composites [Dissertation]. Beijing: University of Science and Technology Beijing, 2015
    [6]
    Liu J W, Zhou X X, Xin H X. High-Si reinforced Al matrix composites prepared by powder semi-solid squeeze. J Alloys Compd, 2017, 726: 772 doi: 10.1016/j.jallcom.2017.08.049
    [7]
    Cui Y, Wang L F, Ren J Y. Multi-functional SiC/Al composites for aerospace applications. Chin J Aeronaut, 2008, 21(6): 578 doi: 10.1016/S1000-9361(08)60177-6
    [8]
    郭开金. 高导热金刚石/铝复合材料界面构建及组织性能研究[学位论文]. 北京: 北方工业大学, 2020

    Guo K J. Design on Interface Construction and Research on Microstructure and Properties of High Thermal Conductivity Diamond/Aluminum Composite [Dissertation]. Beijing: North China University of Technology, 2020
    [9]
    Zhang C, Wang R, Cai Z, et al. Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing. Surf Coat Technol, 2015, 277: 299 doi: 10.1016/j.surfcoat.2015.07.059
    [10]
    Qu X, Zhang L, Wu M, et al. Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog Nat Sci Mater Int, 2011, 21(3): 189 doi: 10.1016/S1002-0071(12)60029-X
    [11]
    Jacobson D M, Ogilvy A J W, Leatham A G. Applications of Osprey lightweight controlled expansion (CE) alloys. Technol Rep, 2004: 1
    [12]
    Liu Y, Fan J, Hao X, et al. Advanced hermetic electronic packaging based on lightweight silicon/aluminum composite produced by powder metallurgy technique. Rare Met, 2020, 39: 1307 doi: 10.1007/s12598-016-0833-1
    [13]
    张志麒. 常压烧结制备高硅Sip/6061Al复合材料的研究[学位论文]. 合肥: 合肥工业大学, 2017

    Zhang Z Q. Study on Preparation of High Silicon Sip/6061Al Composites by Atmospheric Sintering [Dissertation]. Hefei: Hefei University of Technology, 2017
    [14]
    Zuo L, Zhao X, Li Z, et al. A review of friction stir joining of SiCp/Al composites. Chin J Aeronaut, 2020, 33(3): 792 doi: 10.1016/j.cja.2019.07.019
    [15]
    郝世明. 中体积分数SiCp/Al复合材料的制备和微结构及性能研究[学位论文]. 郑州: 郑州大学, 2015

    Hao S M. Study on Preparation, Micro Structure and Properties of Medium Volume Fraction SiCp/Al Composites [Dissertation]. Zhengzhou: Zhengzhou University, 2015
    [16]
    吴孟武, 华林, 周建新, 等. 导热铝合金及铝基复合材料的研究进展. 材料导报, 2018, 32(9): 1486 doi: 10.11896/j.issn.1005-023X.2018.09.013

    Wu M W, Hua L, Zhou J X, et al. Advances in thermal conductive aluminum alloys and aluminum matrix composites. Mater Rev, 2018, 32(9): 1486 doi: 10.11896/j.issn.1005-023X.2018.09.013
    [17]
    张荻, 谭占秋, 熊定邦, 等. 热管理用金属基复合材料的应用现状及发展趋势. 中国材料进展, 2018, 37(12): 994

    Zhang D, Tan Z Q, Xiong D B, et al. Application and prospect of metal matrix composites for thermal management: an overview. Mater China, 2018, 37(12): 994
    [18]
    Chen C W, Lee S L, Lin J C, et al. Effects of Sip size and volume fraction on properties of Al/Sip composites. Mater Lett, 2002, 52(4-5): 334 doi: 10.1016/S0167-577X(01)00418-9
    [19]
    李泽华, 冯志军, 李宇飞, 等. SiC颗粒增强铝基复合材料发展历程及制备方法与应用现状 // 中国铸造活动周论文集. 成都, 2016: 332

    Li Z H, Feng Z J, Li Y F, et al. The development of SiCp/Al matrix composites and its preparative technique and application status // Collection of Chinese Casting Activities. Chengdu, 2016: 332
    [20]
    Chen Z, Tan Z, Ji G, et al. Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites. Adv Eng Mater, 2015, 17(7): 1076 doi: 10.1002/adem.201400412
    [21]
    Johnson W B, Sonuparlak B. Diamond/Al metal matrix composites formed by the pressureless metal infiltration process. J Mater Res, 1993, 8(5): 1169 doi: 10.1557/JMR.1993.1169
    [22]
    Natishan P M, Everett R K, Glesener J W, et al. Electrochemical behavior of diamond-reinforced composites. Mater Sci Eng A, 1995, 197(1): 79 doi: 10.1016/0921-5093(94)09738-0
    [23]
    Beffort O, Vaucher S, Khalid F A. On the thermal and chemical stability of diamond during processing of Al/diamond composites by liquid metal infiltration (squeeze casting). Diamond Relat Mater, 2004, 13(10): 1834 doi: 10.1016/j.diamond.2004.04.014
    [24]
    Ruch P W, Beffort O, Kleiner S, et al. Selective interfacial bonding in Al (Si)–diamond composites and its effect on thermal conductivity. Compos Sci Technol, 2006, 66(15): 2677 doi: 10.1016/j.compscitech.2006.03.016
    [25]
    冯号, 于家康, 薛晨, 等. 电子封装用金刚石/铝复合材料的显微组织与热膨胀性能. 热加工工艺, 2010, 39(14): 59 doi: 10.3969/j.issn.1001-3814.2010.14.019

    Feng H, Yu J K, Xue C, et al. Microstructure and thermal expansion of diamond/Al composites used for electronic packaging. Hot Working Technol, 2010, 39(14): 59 doi: 10.3969/j.issn.1001-3814.2010.14.019
    [26]
    Kerns J A, Colella N J, Makowiecki D, et al. Dymalloy: a composite substrate for high power density electronic components // International Symposium on Microelectronics: Showcasing the Stars of Microelectronics and International Symposium on Ball Grid Array. Los Angeles, 1995: 22
    [27]
    唐仕英, 刘晓新, 郑开伟, 等. 纳米石墨/铝基复合材料的摩擦磨损性能. 机械工程材料, 2007, 31(3): 43

    Tang S Y, Liu X X, Zhang K W, et al. Friction and wear performance of nano-graphite/Al matrix composite material. Mater Mech Eng, 2007, 31(3): 43
    [28]
    罗伟, 王宇, 薛令, 等. 制备高导热金刚石/铜复合材料的影响因素及研究进展. 四川冶金, 2020, 42(6): 2 doi: 10.3969/j.issn.1001-5108.2020.06.002

    Luo W, Wang Y, Xue L, et al. Influence factors and research progress of preparing high thermal conductivity diamond copper composites. Sichuan Metall, 2020, 42(6): 2 doi: 10.3969/j.issn.1001-5108.2020.06.002
    [29]
    Abyzov A M, Kidalov S V, Shakhov F M. Filler-matrix thermal boundary resistance of diamond-copper composite with high thermal conductivity. Phys Solid State, 2012, 54(1): 210 doi: 10.1134/S1063783412010027
    [30]
    Ma S, Zhao N, Shi C, et al. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites. Appl Surf Sci, 2017, 402: 372 doi: 10.1016/j.apsusc.2017.01.078
    [31]
    Weber L, Tavangar R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites. Scr Mater, 2007, 57(11): 988 doi: 10.1016/j.scriptamat.2007.08.007
    [32]
    Fan Y, Guo H, Xu J, et al. Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration. Int J Miner Metall Mater, 2011, 18(4): 472 doi: 10.1007/s12613-011-0465-2
    [33]
    Mizuuchi K, Inoue K, Agari Y, et al. Effect of boron addition on the thermal properties of diamond-particle-dispersed Cu-matrix composites fabricated by SPS. J Mater Sci Chem Eng, 2016, 4(9): 1
    [34]
    Jia S Q, Bolzoni L, Li T, et al. Unveiling the interface characteristics and their influence on the heat transfer behavior of hot-forged Cu-Cr/Diamond composites. Carbon, 2021, 172: 390 doi: 10.1016/j.carbon.2020.10.036
    [35]
    Lei L, Bolzoni L, Yang F. High thermal conductivity and strong interface bonding of a hot-forged Cu/Ti-coated-diamond composite. Carbon, 2020, 168: 553
    [36]
    Hutsch T, Schubert T, Weissgaerber T, et al. Graphite metal composites with tailored physical properties. Emerg Mater Res, 2012, 1(2): 107 doi: 10.1680/emr.11.00021
    [37]
    Yang L, Miyoshi Y, Sugio K, et al. Effect of graphite orientation distribution on thermal conductivity of Cu matrix composite. Mater Chem Phys, 2021, 257: 123702 doi: 10.1016/j.matchemphys.2020.123702
    [38]
    Chen J, Ren S, He X, et al. Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering. Carbon, 2017, 121: 25 doi: 10.1016/j.carbon.2017.05.082
    [39]
    Moustafa S, Daoush W, Ibrahim A, et al. Hot forging and hot pressing of AlSi powder compared to conventional powder metallurgy route. Mater Sci Appl, 2011, 2(8): 1127
    [40]
    Gorbatyuk S M, Pashkov A N, Zarapin A Y, et al. Development of hot-pressing technology for production of aluminum-based metal-matrix composite materials. Metallurgist, 2019, 62(11): 1261
    [41]
    Ren S B, Chen J H, He X B, et al. Effect of matrix-alloying-element chromium on the microstructure and properties of graphite flakes/copper composites fabricated by hot pressing sintering. Carbon, 2018, 127: 412 doi: 10.1016/j.carbon.2017.11.033
    [42]
    薛晨, 白华, 吕继磊, 等. 钛镀层对金刚石/铝导热复合材料的显微组织与热学性能的影响. 硬质合金, 2016, 33(4): 217

    Xue C, Bai H, Lü J L, et al. Effect of Ti coating on microstructure and thermal property of diamond/Al composite. Cement Carb, 2016, 33(4): 217
    [43]
    Ekimov E A, Suetin N V, Popovich A F, et al. Thermal conductivity of diamond composites sintered under high pressures. Diamond Relat Mater, 2008, 17(4-5): 838 doi: 10.1016/j.diamond.2007.12.051
    [44]
    侯领, 沈维霞, 房超, 等. 高导热金刚石/铝复合材料的高温高压制备. 高压物理学报, 2020, 34(5): 93

    Hou L, Shen W X, Fang C, et al. High thermal conductivity of diamond/al composites via high pressure and high temperature sintering. Chin J High Pressure Phys, 2020, 34(5): 93
    [45]
    Yoshida K, Morigami H. Thermal properties of diamond/copper composite material. Microelectron Reliab, 2004, 44(2): 303 doi: 10.1016/S0026-2714(03)00215-4
    [46]
    胡美华, 于昆鹏, 毕宁, 等. 金刚石粒度对颗粒增强铜基复合材料性能影响的研究. 功能材料, 2018, 49(1): 1059

    Hu M H, Yu K P, Bi N, et al. Effect of diamond size on properties of particles reinforced diamond/Cu composites. J Funct Mater, 2018, 49(1): 1059
    [47]
    赵龙, 宋平新, 张迎九, 等. 高温高压法制备金刚石/铜复合材料的研究. 金刚石与磨料磨具工程, 2018, 38(2): 15

    Zhao L, Song P X, Zhang Y J, et al. Study on preparation of diamond/copper composites by high temperature and high pressure method. Diamond Abras Eng, 2018, 38(2): 15
    [48]
    Song S X, Wang Z, Shi G P. Heating mechanism of spark plasma sintering. Ceram Int, 2013, 39(2): 1393 doi: 10.1016/j.ceramint.2012.07.080
    [49]
    Orrù R, Licheri R, Locci A M, et al. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R, 2009, 63(4-6): 127 doi: 10.1016/j.mser.2008.09.003
    [50]
    Saheb N, Iqbal Z, Khalil A, et al. Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater, 2012, 2012: 1
    [51]
    Liu Q, He X B, Ren S B, et al. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating. J Alloys Compd, 2014, 587: 255 doi: 10.1016/j.jallcom.2013.09.207
    [52]
    Mizuuchi K, Inoue K, Agari Y, et al. Thermal conductivity of diamond particle dispersed aluminum matrix composites fabricated in solid–liquid co-existent state by SPS. Composites Part B, 2011, 42(5): 1029 doi: 10.1016/j.compositesb.2011.03.028
    [53]
    张昂昂. CNTs-SiC复合颗粒的制备及其对铝基复合材料性能的影响[学位论文]. 西安: 西安理工大学, 2019

    Zhang A A. Preparation of CNTs-SiC Composites and Its Effect on Properties of Aluminum Composites [Dissertation]. Xian: Xian University of Technology, 2019
    [54]
    Mazahery A, Shabani M O. Microstructural and abrasive wear properties of SiC reinforced aluminum-based composite produced by compocasting. Trans Nonferrous Met Soc China, 2013, 23(7): 1905 doi: 10.1016/S1003-6326(13)62676-X
    [55]
    Chaudhury S K, Singh A K, Sivaramakrishnan C S S, et al. Preparation and thermomechanical properties of stir cast Al-2Mg-11TiO2 (rutile) composite. Bull Mater Sci, 2004, 27(6): 517 doi: 10.1007/BF02707279
    [56]
    苏海, 高文理, 毛成, 等. 搅拌铸造SiCp/2024复合材料的研究. 湖南大学学报(自然科学版), 2009, 36(8): 54

    Su H, Gao W L, Mao C, et al. Study of stir cast SiCp/2024 composite. J Hunan Univ Nat Sci, 2009, 36(8): 54
    [57]
    Hashim J, Looney L, Hashmi M S J. The wettability of SiC particles by molten aluminium alloy. J Mater Process Technol, 2001, 119(1-3): 324 doi: 10.1016/S0924-0136(01)00975-X
    [58]
    Hashim J, Looney L, Hashmi M S J. Metal matrix composites: production by the stir casting method. J Mater Process Technol, 1999, 92-93: 1 doi: 10.1016/S0924-0136(99)00118-1
    [59]
    李通, 李金权, 王文广, 等. 影响碳/金属复合材料导热性能的主要因素探讨. 材料导报, 2018, 32(15): 2640 doi: 10.11896/j.issn.1005-023X.2018.15.015

    Li T, Li J Q, Wang W G, et al. A discussion on the main factors affecting thermal conductivity of carbon/metal matrix composites. Mater Rev, 2018, 32(15): 2640 doi: 10.11896/j.issn.1005-023X.2018.15.015
    [60]
    Monje I E, Louis E, Molina J M, et al. Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control. Composites Part A, 2013, 48: 9 doi: 10.1016/j.compositesa.2012.12.010
    [61]
    车子璠. 金刚石增强铝基复合材料界面形成机理及导热性能[学位论文]. 北京: 北京科技大学, 2017

    Che Z F. The Mechanism of Interfacial Structure Formation and Thermal Properties of Al/Diamond Composite [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
    [62]
    洪庆楠, 任淑彬, 陈志宝, 等. Co对熔渗法制备金刚石/Cu复合材料性能的影响. 粉末冶金技术, 2015, 33(1): 49

    Hong Q N, Ren S B, Chen Z B, et al. Effect of Co on properties of diamond/Cu composites by infiltration. Powder Metall Technol, 2015, 33(1): 49
    [63]
    张永杰, 董应虎, 张瑞卿, 等. 金刚石/铜复合材料导热性能的数值模拟. 材料热处理学报, 2018, 39(6): 110

    Zhang Y J, Dong Y H, Zhang R Q, et al. Numerical simulation of thermal conductivity of diamond/copper composites. Trans Mater Heat Treat, 2018, 39(6): 110
    [64]
    余金辉. Sip/Al复合材料的放电等离子烧结及其热性能研究[学位论文]. 武汉: 武汉理工大学, 2013

    Yu J H. Preparation and Properties of Sip/Al Composites by Spark Plasma Sintering [Dissertation]. Wuhan: Wuhan University of Technology, 2013
    [65]
    修子扬, 张强, 武高辉, 等. 高体积分数电子封装用铝基复合材料性能研究. 电子与封装, 2006(2): 16 doi: 10.3969/j.issn.1681-1070.2006.02.004

    Xiu Z Y, Zhang Q, Wu G H, et al. Study on properties of high reinforcement-content aluminum matrix composites for electronic packaging. Electron Packag, 2006(2): 16 doi: 10.3969/j.issn.1681-1070.2006.02.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article Views(1994) PDF Downloads(198) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return