高级检索

冲击加载条件下金属粉末的动态力学性能分析

罗晓龙, 刘军, 胡仙平

罗晓龙, 刘军, 胡仙平. 冲击加载条件下金属粉末的动态力学性能分析[J]. 粉末冶金技术, 2018, 36(2): 111-117. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.02.006
引用本文: 罗晓龙, 刘军, 胡仙平. 冲击加载条件下金属粉末的动态力学性能分析[J]. 粉末冶金技术, 2018, 36(2): 111-117. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.02.006
LUO Xiao-long, LIU Jun, HU Xian-ping. Analysis on dynamic mechanics performance of metal powders by impact loading[J]. Powder Metallurgy Technology, 2018, 36(2): 111-117. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.02.006
Citation: LUO Xiao-long, LIU Jun, HU Xian-ping. Analysis on dynamic mechanics performance of metal powders by impact loading[J]. Powder Metallurgy Technology, 2018, 36(2): 111-117. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.02.006

冲击加载条件下金属粉末的动态力学性能分析

基金项目: 

国家自然科学基金资助项目 11372148

详细信息
    通讯作者:

    刘军, E-mail: liujun@nbu.edu.cn

  • 中图分类号: TF124;TF03+1

Analysis on dynamic mechanics performance of metal powders by impact loading

More Information
  • 摘要: 为研究金属粉末在冲击加载过程中, 粉末预压力对压坯动态力学响应的影响, 设计了基于分离式霍普金森压杆装置(split Hopkinson pressure bar, SHPB)的金属粉末高应变率冲击加载实验, 并结合一维应力波理论对预压后粉末压坯的力学性能进行分析。结果表明:在冲击过程中, 金属压坯会表现出较为明显的应变率效应; 加载率越大, 材料的应变能越大, 预压力越大, 应变硬化率越大; 在相同的加载条件下, 预压力越大, 压坯临界位移越小。
    Abstract: A split Hopkinson pressure bar (SHPB) test system was designed to study the dynamic mechanics performance of metal particle by impact loading. The powder mechanical properties were analyzed by one-dimensional stress wave theory. The results show an obviously strain rate effect in the impact compaction process. As the pre-pressure increases, the faster loading rate results in the larger material strain energy, and the strain hardening rate is higher. The critical displacement of green-compacts is decreased with the increase of pre-pressure under the same loading condition.
  • 粉末冶金摩擦材料是一种含有金属和非金属的多组元假合金。一般由基体组元、摩擦组元和润滑组元三部分组成[1-2]。与有机摩擦材料相比, 粉末冶金摩擦材料的力学强度高、抗冲击载荷强、摩擦系数稳定、热稳定性高、热传导性好、抗腐蚀能力强, 以及耐磨性能优良, 是现代刹车材料中应用较为广泛的材料之一[3-5]。目前已被应用于各种大型民用飞机、高性能军用飞机、火车、汽车、风电行业以及其它机械制动装置中[6-10]

    相对比于铁基粉末冶金摩擦材料高温下容易产生胶合、摩擦系数波动大、异常磨损明显、噪声大等情况, 铜基摩擦材料因其良好的导热性和自润湿性能, 在干、湿条件下均具备稳定的摩擦性能, 并在高速制动摩擦过程中, 基体与铜结构形成热扩散通道, 能够在相对短的时间内将大量摩擦热散发到环境中, 有效避免了热聚集引起胶粘对制动盘性能造成不利的影响[11]。长期以来, 对铜基粉末冶金摩擦材料的研究主要集中在配方研究和制备工艺对摩擦磨损性能的影响方面, 而刹车速度对铜基粉末冶金摩擦材料的摩擦磨损机理的研究相对较少。本文以铜基粉末冶金摩擦材料为研究对象, 探讨不同的刹车速度对铜基粉末冶金摩擦材料摩擦磨损性能的影响规律, 并对其微观组织进行研究表征, 为新型铜基粉末冶金摩擦材料的深入研究提供参考与理论支持。

    实验中所用的材料主要包括电解铜粉、还原铁粉、鳞片状天然石墨, SiO2粉和铬铁等。按表 1的配方分别称取各种粉料, 并在双锥形混合机中混合20~24 h, 将混合均匀的混合料制成压坯, 压坯尺寸为20 mm×15 mm, 厚度大于5 mm。将压坯置于钟罩式加压烧结炉内, 并在氢气保护气氛中进行加压烧结, 烧结温度为850~900℃, 烧结压力为0.3~0.5 MPa, 烧结时间为3.5~4 h。烧结完成后冷却至500℃后再随箱水冷至≤60℃, 出砂。

    表  1  铜基粉末冶金摩擦材料化学成分(质量分数)
    Table  1.  Chemical composition of the copper-based powder metallurgy brake materials  %
    Cu Sn Fe SiO2 铬铁 其它
    60~70 1~6 6~15 5~10 2~5 10~20
    下载: 导出CSV 
    | 显示表格

    采用JEOL公司的JSM-6390A型扫描电子显微镜(scanning electron microscope, SEM)对铜基粉末冶金摩擦材料实验前后的表面形貌进行观测; 采用HRF-150型洛氏硬度计和夏比冲击试验机分别对烧结后粉末层的硬度和冲击韧性进行表征; 在MM-3000型摩擦磨损性能试验台上进行摩擦磨损性能试验, 对偶盘材料为30CrMnSiA。试验前, 摩擦副表面先磨合至摩擦副贴合面积≥80%, 摩擦磨损试验条件及要求见表 2

    表  2  摩擦磨损试验条件
    Table  2.  Condition of friction and wear test
    编号 惯量/ (kg·m2) 刹车压力/ MPa 刹车速度/ (m·s-1) 刹车转速/ (r·min-1) 次数
    1# 0.225 0.66 27.78 2652 10
    2# 33.33 3183 10
    3# 38.89 3714 10
    4# 44.44 4244 10
    5# 50.00 4775 10
    6# 55.56 5305 10
    下载: 导出CSV 
    | 显示表格

    摩擦试验机记录摩擦吸收功率、刹车力矩与刹车时间关系。根据式(1)可计算出摩擦系数。

    $$ \mu = \frac{{2M}}{{\left( {{\gamma _1} + {\gamma _2}} \right) \cdot F}} $$ (1)

    式中:μ为摩擦系数, M为力矩(N·m), F为荷重(N), γ1为内圈半径(m), γ2为外圈半径(m)。用电子天平测量试样摩擦试验前后的质量变化; 用千分尺测量试样上6个不同位置处摩擦试验前后的厚度变化, 计算出摩擦试验前后试样厚度差, 求出平均值即试样的线性磨损量。

    图 1为烧结后铜基粉末冶金摩擦材料表面显微组织形貌。图中黑色的为鳞片石墨, 白色的为铜, 灰色的可能为铁、铬铁或SiO2颗粒。从图可以看出, 大量的鳞片石墨稳定地分布在铜基体当中, 从而保证了刹车过程的平稳性和摩擦系数的稳定性。从图 1 (b)可以清楚地看到大量的灰色颗粒, 其中近似球状的较大颗粒为铬铁(200目, 如箭头所示), 其与基体接触良好, 两者之间观测不到明显的界面[12]; 较小的球状物可能为铁、二氧化硅等颗粒(100目); 这些颗粒均匀地分布在铜基体当中, 铜基体包裹着鳞片状石墨分布在摩擦片表面, 具有稳定的摩擦系数。

    图  1  摩擦材料试样表面扫描电子显微形貌
    Figure  1.  SEM images of sample surface of friction material

    铜基粉末冶金摩擦材料的力学性能如表 3所示。从表中可以看出, 摩擦材料的密度较高, 说明摩擦材料中的非金属组元所占体积较小; 材料的洛氏硬度较低, 说明摩擦试验中的对偶磨损相对较小; 材料的抗冲击韧性较大, 表明摩擦组元在材料烧结过程中以机械镶嵌的方式存在基体材料中, 提高了摩擦材料的耐磨性。在高速刹车过程中, 摩擦材料的力学性能确保了其在较大冲击力和较大磨损量条件下的使用。

    表  3  摩擦材料的力学性能
    Table  3.  Mechanical properties of friction material
    密度/ (g·cm-3) 洛氏硬度,HB 冲击韧性/ (J·cm-2)
    ≥5.72 ≥27 ≥33.5
    下载: 导出CSV 
    | 显示表格

    图 2为试样在55.56 m/s刹车速度下的摩擦磨损曲线图。在此刹车速度下, 最大摩擦系数为0.5061, 平均摩擦系数为0.4521;经计算, 离均差率为11.94%, 较小的离均差率说明了铜基摩擦材料具有稳定的摩擦系数。从图中还可以看出, 摩擦系数曲线无明显的振颤现象, 力矩曲线也呈稳定增长趋势, 这也充分表明了该铜基粉末冶金摩擦材料的刹车制动效果平稳, 产生这种现象的原因可能是由于摩擦材料配方中摩擦组元铬铁和铜基体具有良好的润湿性能, 从而提高了摩擦系数的稳定性[12]

    图  2  铜基粉末冶金摩擦材料在55.56 m/s刹车速度下的摩擦数据曲线
    Figure  2.  Friction curves of Cu-based powder metallurgy material at the braking velocity of 55.56 m/s

    图 3 (a)是在不同刹车速度条件下摩擦磨损性能试验后试样的摩擦吸收功率和摩擦系数曲线图。摩擦吸收功率是指试样在单位时间单位面积内所吸收的功, 它与摩擦面的温度升高有着直接对应关系, 因此影响试样的摩擦系数。从图 3 (a)可以看出, 随着刹车速度增大, 刹车能量升高, 摩擦面的温度进一步升高, 试样的摩擦吸收功率呈近似线性升高。刹车速度从27.78 m/s增加到44.44 m/s, 试样的摩擦吸收功率速率增长最快; 当刹车速度从44.44 m/s增加到55.56 m/s, 试样的摩擦吸收功率增加相对缓慢, 这表明铜基粉末冶金摩擦材料在低速条件下, 吸收的动能可能主要被铜基摩擦材料中的孔隙吸收并传导到空气当中; 当制动速率超过44.4 m/s时, 摩擦材料的吸收动能会被铜基摩擦材料自身所吸收, 并通过高的导热性将吸收能量传导至空气中。从图中还可以看出, 当刹车速度从27.78 m/s增加到44.44 m/s时, 摩擦系数也相对从0.4040增加到0.5071。但随着刹车速率的提高, 试样的摩擦系数出现了明显下降的趋势, 这可能与摩擦材料的摩擦机理和微观结构有关。

    图  3  不同刹车速度下铜基粉末冶金摩擦材料的摩擦系数和摩擦吸收功率曲线(a)及线性磨损率和质量损失曲线(b)
    Figure  3.  Relationships of friction absorption power–friction coefficient (a) and linear wear rate–mass loss (b) with braking velocity of Cu-based powder metallurgy friction material

    图 3 (b)是在不同刹车速度条件下摩擦磨损性能试验后试样的线性磨损率和质量磨损。从图 3 (b)可以看出, 试样的线磨损率随刹车速度的变化与质量损失随刹车速度的变化一致, 都呈上升的趋势。当刹车速度从27.78 m/s增加到33.33 m/s, 试样的线磨损率和质量磨损均较大, 这是由于在较低的速度下, 刹车未进入平稳阶段, 出现了较为明显的磨粒磨损; 当刹车速度从33.33 m/s增加到50.00 m/s时, 粘着磨损起主要作用, 因此线性磨损率和质量磨损都相对较小; 当刹车速率增长至55.56 m/s时, 试样的质量磨损呈明显增长趋势, 这可能是由于在高速条件下, 铜基摩擦材料自身软化造成摩擦组元脱落, 从而质量损耗明显。但由于线性磨损率数据的获得是通过千分尺测量一定面积上的厚度损耗而计算得到的, 因此线性磨损率并不能完全反应出摩擦组元的脱落引起厚度的微小变化, 因而线性损耗率增长不明显。

    为进一步研究刹车速度对摩擦磨损性能的影响, 探讨摩擦磨损性能与摩擦面的关系, 采用扫描电子显微镜对在不同刹车速度下试样的摩擦面进行分析。图 4所示为不同刹车速度试验后铜基粉末冶金摩擦材料表面的扫描电子显微形貌。从图中可以看出, 当刹车速度为27.78 m/s和33.33 m/s时, 由于刹车速度较低, 摩擦剪切力较小, 因此摩擦表面温度较低, 且未能形成连续完整的氧化膜, 从而出现了较小面积的剥落且剥落的块状物较小, 其中剥落后较小的硬质颗粒在剪切力作用下从摩擦表面脱落, 在摩擦副之间形成磨粒, 在摩擦表面产生犁沟, 发生磨料磨损和剥层损耗, 其磨损主要是由机械啮合作用造成的; 当刹车速度为38.89 m/s和44.44 m/s时, 摩擦表面较为光滑, 无明显的脱落。这是由于随着刹车速度的增大, 摩擦吸收功率增大, 摩擦面的温度提高, 摩擦剪切力的作用也逐渐增强, 氧化膜趋于平滑连续, 摩擦表面与摩擦副的真实接触面积越大, 其机械啮合作用减弱, 粘着机理起主要作用。随着刹车速度的进一步增大, 摩擦表面在较大剪切力的作用下发生了较为严重的脱落。当刹车速度从50.00 m/s逐渐增大到55.56 m/s, 试样摩擦表面单位面积吸收的能量进一步增大, 温度进一步升高, 摩擦表面在较大剪切力的作用下发生了较为严重的脱落。这是由于摩擦产生的高温引起材料软化, 破坏了形成的氧化膜, 降低了分子键的抗剪切强度, 从而在摩擦面上出现了不同程度的犁沟[13-14]

    图  4  铜基粉末冶金摩擦材料在不同刹车速度下的扫描电子显微形貌
    Figure  4.  SEM images of the Cu-based powder metallurgy friction material under the different velocity

    (1) 铜基粉末冶金摩擦材料的摩擦磨损性能与刹车速度密切相关。随着刹车速度的增大, 刹车能量急剧升高, 摩擦材料的摩擦吸收功率近似线性增长, 而摩擦系数呈先增大后减小的趋势, 并且铜基粉末冶金摩擦材料的线磨损率与质量磨损随刹车速度增长呈上升趋势。

    (2) 在一定的刹车速度下, 铜基粉末冶金摩擦材料摩擦表面的氧化膜愈趋平滑连续。但随着刹车速度的提高, 铜基体自身发生软化, 破坏了已形成的氧化膜, 降低了分子键的抗剪切强度, 从而增大了磨损量。

  • 图  1   传统霍普金森压杆示意图

    Figure  1.   General arrangement of a conventional split Hopkinson pressure bar

    图  2   粉末装粉装置

    Figure  2.   Device of filling powder

    图  3   20 kN预压后铁粉在冲击加载条件下的波形曲线

    Figure  3.   Original wave of ferrous powder after 20 kN precompaction under impact loading condition

    图  4   Fe粉试样的对波图

    Figure  4.   Stress equilibrium history for ferrous powder

    图  5   应变率及应力时程曲线

    Figure  5.   Strain and strain-rate histories of ferrous powder

    图  6   预压过程中三种材料的力–位移曲线

    Figure  6.   Force-displacement of three materials curve during precompaction

    图  7   铝粉(a)和铜粉(b)压坯相对密度变化情况

    Figure  7.   Relative density of aluminium powder (a) and copper powder (b)

    图  8   15 kN预压后的铜粉在不同加载速率下的应力–应变曲线

    Figure  8.   Stress–strain curve of copper powder after 15 kN precompaction under different loading velocities

    图  9   20 kN预压后铁粉在不同加载速率下的应力–应变曲线

    Figure  9.   Stress–strain curve of ferrous powder after 20 kN precompaction under different loading velocities

    图  10   应变能随着加载速率的变化情况

    Figure  10.   Change of strain energy under different impact velocities

    图  11   不同预压条件下铜粉应力–应变曲线

    Figure  11.   Stress–strain curve of copper powder under different pre-pressure condition

    图  12   Al粉在不同入射压力下的力–位移曲线

    Figure  12.   Force-displacement curve of aluminium powder under different loading condition

    图  13   不同加载条件下临界位移随预压力的变化情况

    Figure  13.   Change of critical displacement with precompaction force under different loading condition

    表  1   铜粉中各元素的化学成分(质量分数)

    Table  1   Chemical composition of electrolytic copper powder  %

    Cu Fe Pb As Sb O Bi Ni Sn Zn S Cl 氢损
    99.800 0.020 0.050 0.010 0.010 0.150 0.002 0.003 0.004 0.004 0.004 0.004 0.100
    下载: 导出CSV

    表  2   铁粉中各元素的化学成分(质量分数)

    Table  2   Chemical composition of reduced iron powder  %

    Fe Mn Si C S HCl不溶物 氢损
    >98.000 0.300 0.110 0.024 0.020 0.450 0.310
    下载: 导出CSV

    表  3   铝粉中各元素的化学成分(质量分数)

    Table  3   Chemical composition of aluminite powder  %

    Al Cu Fe Si 水份
    99.8000 0.0014 0.0908 0.0409 0.0100
    下载: 导出CSV
  • [1]

    Richard F. HVC punches PM to new mass production limits. Met Powder Rep, 2002, 57(9): 26. DOI: 10.1016/S0026-0657(02)80389-7

    [2] 何杰, 肖志瑜, 关航健, 等.纯钛粉高速压制行为及其烧结性能研究.粉末冶金技术, 2016, 34(3): 178 DOI: 10.3969/j.issn.1001-3784.2016.03.004

    He J, Xiao Z Y, Guan H J, et al. High velocity compaction behavior and sintered properties of pure Ti powder. Powder Metall Technol, 2016, 34(3): 178 DOI: 10.3969/j.issn.1001-3784.2016.03.004

    [3]

    Edser C. Höganäs promotes potential of high velocity compaction. Met Powder Rep, 2001, 56(9): 6.

    [4]

    Chelluri B, Knoth E. Powder forming using dynamic magnetic compaction//4th International Conference on High Speed Forming. Columbus, Ohio, 2010: 26. http://www.researchgate.net/publication/43798213_Powder_Forming_Using_Dynamic_Magnetic_Compaction

    [5]

    Azhdar B, Stenberg B, Kari L. Determination of dynamic and sliding friction, and observation of stick-slip phenomenon on compacted polymer powders during high-velocity compaction. Polym Test, 2006, 25(8): 1069. DOI: 10.1016/j.polymertesting.2006.07.009

    [6]

    Azhdar B, Stenberg B, Kari L. Determination of springback gradient in the die on compacted polymer powders during high-velocity compaction. Polym Test, 2006, 25(1): 114. DOI: 10.1016/j.polymertesting.2005.09.002

    [7] 王建忠, 曲选辉, 尹海清, 等.电解铜粉高速压制成形.中国有色金属学报, 2008, 18(8): 1498 DOI: 10.3321/j.issn:1004-0609.2008.08.021

    Wang J Z, Qu X H, Yin H Q, et al. High velocity compaction of electrolytic copper powder. Chin J Nonferrous Met, 2008, 18(8): 1498 DOI: 10.3321/j.issn:1004-0609.2008.08.021

    [8] 易明军, 尹海清, 曲选辉, 等.力与应力波对高速压制压坯质量的影响.粉末冶金技术, 2009, 27(3): 207 http://pmt.ustb.edu.cn/article/id/fmyjjs200903012

    Yi M J, Yin H Q, Qu X H, et al. Influence of force and stress wave on the quality of green compacts in high velocity compaction. Powder Metall Technol, 2009, 27(3): 207 http://pmt.ustb.edu.cn/article/id/fmyjjs200903012

    [9] 王德广.金属粉末高致密化成形及其数值模拟研究, 合肥: 合肥工业大学, 2010

    Wang D G. Research on High Densification and Numerical Simulation of Metal Powder Compaction Processes[Dissertation]. Hefei: Hefei University of Technology, 2010

    [10] 吴斌, 刘军, 杨勇.基于有限元仿真分析高速压实粉末时模壁摩擦因数对压制效果的影响.粉末冶金技术, 2014, 32(6): 442 http://pmt.ustb.edu.cn/article/id/fmyjjs201406009

    Wu B, Liu J, Yang Y. The influence of the mold wall friction coefficient on HVC powder based on the finite element simulation analysis. Powder Metall Technol, 2014, 32(6): 442 http://pmt.ustb.edu.cn/article/id/fmyjjs201406009

    [11]

    Skoglund P. High density PM parts by high velocity compaction. Powder Metall, 2001, 44(3): 199. http://www.researchgate.net/publication/290814633_High_density_PM_components_by_high_velocity_compaction

    [12] 迟悦, 果世驹, 孟飞, 等.粉末冶金高速压制成形技术.粉末冶金工业, 2005, 15(6): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201202017.htm

    Chi Y, Guo S J, Meng F, et al. High velocity compaction in powder metallurgy. Powder Metall Ind, 2005, 15(6): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201202017.htm

    [13] 杨霞.粉末冶金高速压制致密化机制的研究进展.粉末冶金工业, 2016, 26(5): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201605019.htm

    Yang X. Research progress on densification mechanism of powder metallurgy high-velocity compaction. Powder Metall Ind, 2016, 26(5): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201605019.htm

    [14] 闫志巧, 蔡一湘, 陈峰.粉末冶金高速压制技术及其应用.粉末冶金技术, 2009, 27(6): 455 http://pmt.ustb.edu.cn/article/id/fmyjjs200906013

    Yan Z Q, Cai Y X, Chen F. High velocity compaction in powder forming and the promising applications. Powder Metall Technol, 2009, 27(6): 455 http://pmt.ustb.edu.cn/article/id/fmyjjs200906013

    [15] 王礼立.应力波基础. 2版.北京: 国防工业出版社, 2005

    Wang L L. Foundation of Stress Waves. 2nd Ed. Beijing: National Defense Industry Press, 2005

  • 期刊类型引用(10)

    1. 徐琴,张驰,樊江磊,刘建秀. Cr-Fe粒度对铜基粉末冶金材料摩擦磨损性能的影响. 特种铸造及有色合金. 2024(05): 587-590 . 百度学术
    2. 陈孝婷,卢纯,莫继良,张庆贺,赵婧. 考虑摩擦升温的铁路列车制动摩擦块高温磨损机制演变. 中国表面工程. 2023(03): 142-151 . 百度学术
    3. 刘思涵,耿雪骞,王晔,马运章,陈德峰,张波,曹宏发,齐冀,吕宝佳. Cu基粉末冶金闸片高速制动性能. 粉末冶金技术. 2023(03): 210-217 . 本站查看
    4. 安先龙,王国权,王立勇,陈勇. 铜基粉末冶金摩擦块摩擦磨损特性研究. 机械设计与制造. 2023(12): 209-213+218 . 百度学术
    5. 贾潞. 铜基粉末冶金摩擦材料粘接层失效机理研究. 铁道机车车辆. 2023(06): 111-116 . 百度学术
    6. 刘喜双,许雄飞,王秀飞,文国富,尹彩流,冯驰原. 鳞片石墨含量对地铁集电靴用铜基粉末冶金材料性能的影响. 粉末冶金工业. 2021(03): 18-24 . 百度学术
    7. 任澍忻,陈文革,冯涛,欧阳方明. 粉末冶金制备碳纤维增强铁-铜基摩擦材料的组织与性能. 粉末冶金技术. 2020(02): 104-112 . 本站查看
    8. 韩明,杜建华,宁克焱,李辉,王志勇,邱倩. 温度分布对铜基摩擦材料点蚀损伤的影响. 粉末冶金技术. 2019(01): 18-22 . 本站查看
    9. 姚萍屏,肖叶龙,张忠义,周海滨,贡太敏,赵林,邓敏文. 高速列车粉末冶金制动材料的研究进展. 中国材料进展. 2019(02): 116-125 . 百度学术
    10. 丁干,王国权,曾圣迪,陈勇,王立勇,雷桐辉. 铜基粉末冶金材料摩擦磨损性能分析. 北京信息科技大学学报(自然科学版). 2019(04): 61-65+96 . 百度学术

    其他类型引用(6)

图(13)  /  表(3)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  76
  • PDF下载量:  13
  • 被引次数: 16
出版历程
  • 收稿日期:  2017-09-18
  • 刊出日期:  2018-04-26

目录

/

返回文章
返回