高级检索

氮气保护下铝基烧结含油轴承烧结工艺优化研究

严峻, 査五生, 张桂银

严峻, 査五生, 张桂银. 氮气保护下铝基烧结含油轴承烧结工艺优化研究[J]. 粉末冶金技术, 2018, 36(3): 211-216. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.009
引用本文: 严峻, 査五生, 张桂银. 氮气保护下铝基烧结含油轴承烧结工艺优化研究[J]. 粉末冶金技术, 2018, 36(3): 211-216. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.009
YAN Jun, ZHA Wu-sheng, ZHANG Gui-ying. Research on the optimum sintering process of Al-based oil bearing in N2 atmosphere[J]. Powder Metallurgy Technology, 2018, 36(3): 211-216. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.009
Citation: YAN Jun, ZHA Wu-sheng, ZHANG Gui-ying. Research on the optimum sintering process of Al-based oil bearing in N2 atmosphere[J]. Powder Metallurgy Technology, 2018, 36(3): 211-216. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.009

氮气保护下铝基烧结含油轴承烧结工艺优化研究

基金项目: 

四川省科技计划资助项目 2014GZ0088

四川省教育厅自然重大培育项目资助项目 16201452

详细信息
    通讯作者:

    査五生, E-mail: 1434758301@qq.com

  • 中图分类号: TG146.2+1

Research on the optimum sintering process of Al-based oil bearing in N2 atmosphere

More Information
  • 摘要: 通过粉末冶金技术制备质量分数为7.5%的含铜铝基烧结含油轴承试样,研究了在氮气保护下不同烧结温度以及烧结时间对试样的微观结构和综合性能的影响,优化得到最佳烧结工艺。研究结果表明,当烧结温度超过537℃时,烧结试样发生局部熔化,液相开始生成;随着烧结温度升高和烧结时间的延长,烧结试样的尺寸收缩率以及压溃强度不断提高而含油率不断减小。当烧结温度为560℃、烧结时间为120 min时,烧结试样拥有良好的综合性能,压溃强度和含油率分别为151.3 MPa和16.7%,呈最佳烧结状态。
    Abstract: The Al-based sintered oil bearing (containing 7.5% Cu by mass) was prepared by powder metallurgy in N2 atmosphere, the effects of sintering temperature and sintering time on the microstructures and comprehensive performances of Al-based sintered oil bearing were investigated, and the optimal sintering processing was obtained in this paper. The results show that, when the sintering temperature is beyond 537℃, the powder particles are partly molten, and the liquid phase is generated. With the increase of sintering temperature and the extension to sintering time, the dimensional shrink rate and crushing strength are increased, but the oil content is decreased. The optimal comprehensive performances of Al-based sintered oil bearing are obtained when the bearing samples are sintered at 560℃ for 120 min, and the crushing strength and oil content reaches 151.3 MPa and 16.7%, respectively.
  • 钛合金是一种比强度高、耐蚀性能优异的合金材料, 对航空航天、汽车制造等领域发挥了重要的作用。但在实际应用过程中, 钛合金存在抗高温氧化与耐磨性不足的问题, 严重限制了该合金材料在高温载荷领域的进一步推广应用[1-3]。为了进一步提升钛合金的各项性能, 大多数研究人员主要通过喷焊、气相沉积、激光熔覆等工艺对钛合金进行表面处理[4-6]。其中, 激光熔覆技术可以在不改变钛合金性能的前提下使涂层间形成良好冶金结合状态, 对于钛合金材料摩擦性能的提升起到了明显的促进作用[7-8]。现阶段, 许多学者在Ti4合金耐磨性方面主要是通过增加该材料的表面硬度来实现。不过, 加入钛合金中的TiN、WC、VC等硬质相颗粒在860℃温度下却存在容易被空气氧化的问题[9-10]。例如, Feng等[11]利用激光熔覆处理工艺对Ti5合金表面进行处理, 生成包含增强相TiNi/Ti2Ni基涂层, 并对该涂层进行了表征, 得到涂层中形成了具有均匀分布状态的陶瓷相颗粒, 从而增加了合金材料的耐磨性。Guo等[12]则利用激光熔覆技术对Ni Cr BSi/WC–Ni合金涂层进行了处理, 制得了具有良好耐磨性能的合金涂层。齐鸣等[13]采用激光熔覆工艺使高温合金表面生成MoSi2/Al涂层, 之后在1050℃下对该涂层实施了耐高温氧化性测试, 当涂层中含有的Al比例上升后, 生成的氧化膜中的Al2O3会显著提高熔覆层的耐高温氧化性。余鹏程等[14]对Ti4合金表面进行激光熔覆处理后得到了含有增强相Al3Ti/Ni Ti基涂层, 研究得到当涂层内含有的Al3Ni2脆性颗粒数量增加后, 涂层耐磨性发生了降低的现象。

    到目前为止, 大部分学者都是将研究重点集中于通过激光熔覆处理方法来提升钛合金的耐磨性方面, 但很少有文献报道关于钛合金耐高温抗氧化性能的改善内容[15]。本文主要通过激光熔覆处理工艺使Ti4合金表面生成Ni Al Si涂层, 并深入探讨了在860℃温度下该涂层对抗氧化性提升的效果及其作用机理。

    实验用原料为Ti4合金, 试样尺寸40 mm×40 mm×8 mm, 用砂纸打磨试样熔覆面, 充分去除表面氧化膜。选择80Ni–40Al–20Si复合粉末作为熔覆材料, 采用QM-3SP04型行星球磨机对该粉末进行12 h的球磨处理。

    先在Ti4合金试样涂覆一层甲基纤维素黏结剂, 再铺设一层厚度为1.5 mm的混合粉末, 再将其放入120℃的干燥箱内进行2 h的保温。本实验在DLS-980.10-3000C半导体激光器上完成激光熔覆过程, 工艺参数为: 输出功率2 kW, 扫描速度3.5 mm·s-1, 光斑大小5 mm×2.5 mm。

    通过线切割方式得到熔覆层的截面金相试样, 并对该试样进行了X射线衍射(X-ray diffraction, XRD) 表征。利用S-4700型场发射扫描电镜(scanning electron microscopy, SEM) 对涂层微观组织进行了观察, 同时在该电镜附带的能谱仪(energy disperse spectroscope, EDS) 上表征了涂层的各元素组成情况。利用HMF1400-50高温电阻炉测试其抗高温氧化性能, 并计算单位面积对应的质量变化情况。对经过氧化处理的合金与涂层进行金相观察。

    图 1 (a) 中可以看到涂层横截面的扫描电子显微形貌。根据图 1 (a) 可知, 在涂层内也没有观察到裂纹结构, 只有少数气孔存在。从图 1 (b) 中可以看到在Ti4和涂层的结合部位形成了熔合线, 可以推断涂层和钛合金之间形成了良好的冶金结合状态。同时还可以观察到在涂层的底部区域形成了众多的柱状晶, 这主要是因为受到凝固冷却的影响, 钛合金垂直的方向上具有最快的冷却速率, 从而导致涂层的下部晶粒优先从垂直钛合金表面的方向上开始生长。图 1 (c) 是对应于图 1 (b) 的放大图, 可以明显看到该图包含了块状区域A与网状区域B两种, 对这些区域进行能谱测试可知, 区域A中的元素类型包括Ti与Si, 两者的原子数分数比接近5:3, 可见该区域的成分主要是Ti5Si3金属间化合物; 对区域B进行元素分析得到该区域包含Ni与Al两种元素, 其原子数分数比接近3:2, 进一步结合X射线衍射图谱可知, 区域B的成分主要是Al3Ni2金属间化合物, 因此可以推断涂层中包含了Ti5Si3与Al3Ni2两种主要成分。

    图  1  合金涂层横截面扫描电子显微组织形貌: (a) 整体; (b) 热影响区; (c) 热影响区放大图
    Figure  1.  SEM images of alloy coating in cross section: (a) integral; (b) heat affected zone; (c) magnification of heat affected zone
    表  1  图 1 (c) 中区域A和区域B能谱分析
    Table  1.  EDS analysis of area A and area B in Fig. 1 (c)
    区域 原子数分数/%
    Ti Ni Al Si
    A 44.28 22.18 5.48 28.06
    B 23.54 42.18 30.02 4.26
    下载: 导出CSV 
    | 显示表格

    表 2中可以看到对钛合金与合金涂层进行高温氧化测试得到的试样单位面积质量变化值, 其中钛合金的单位面积质量增加值显著高于合金涂层, 可见合金涂层的耐高温氧化性能优于钛合金。经过40 h的恒温氧化处理后, 试样单位面积质量增加了24.4 mg·cm-2, 可见在860℃温度下, Ti4合金的表面发生了明显的氧化过程, 此时形成的氧化膜也不能有效抑制氧原子的扩散过程。其中, 在初期高温氧化阶段, 合金涂层具有很快的氧化速率, 当氧化时间不断增加后, 合金涂层的氧化速率降低, 因此可以推断合金涂层表面氧化膜具有降低氧化速率的作用; 经过40 h的高温氧化处理后, 粉末合金涂层的质量增加值是2.19 mg·cm-2, 比Ti4合金的耐高温氧化性能提高了12倍左右。

    表  2  Ti4合金和合金涂层高温氧化(860℃) 测试结果
    Table  2.  High temperature oxidation test results of Ti4 alloy and alloy coating at 860℃
    样品 单位面积质量变化/(mg·cm2)
    5 h 10 h 20 h 30 h 40 h
    Ti4 合金 2.40 4.40 9.20 16.70 24.40
    合金涂层 1.82 1.90 2.02 2.11 2.19
    下载: 导出CSV 
    | 显示表格

    Ti4合金与粉末合金涂层在860℃温度下进行40 h的氧化处理后, 对其表面氧化层进行X射线衍射测试得到如图 2所示的谱图。从图 2的测试谱图中可以发现, Ti4合金的氧化层基本包含Al2O3与TiO2两种物相成分, 并且TiO2的衍射峰强度显著高于Al2O3, 说明氧化膜主要是由TiO2构成。由于在860℃下V2O5的挥发性较高, 因此在X射线衍射谱图中未观察到该氧化物的衍射峰, 同时氧化膜也因为V2O5的挥发而形成多孔结构, 使氧原子更易向膜内扩散, 导致合金耐高温氧化性降低。

    图  2  860℃氧化处理40 h后Ti4合金(a) 和合金涂层表面氧化层(b) X射线衍射图谱
    Figure  2.  XRD patterns of Ti4 alloy (a) and oxide layer of alloy coating surface (b) after oxidation at 860℃for 40 h

    图 3 (a) 为在860℃下进行40 h氧化处理后得到的Ti4合金横截面扫描电子显微形貌, 可以发现此时Ti4合金表面出现了较严重腐蚀的情况, 生成的氧化膜表现出了明显的热脆性特征, 较易从表面发生脱落的现象。对Ti4合金的氧化膜微观形貌进行分析可知, 氧化膜主要由许多球形颗粒与柱状物构成, 根据能谱分析(表 3) 可知, 柱状物成分主要是TiO2。在TiO2的形核与生长期间, 还会形成少量的Al2O3, 使氧化膜中形成众多微孔, 这种不连续的氧化膜结构不能发挥有效阻止氧原子扩散的作用, 不利于提高合金的耐高温氧化性。

    图  3  Ti4合金和合金涂层氧化膜横截面扫描电子显微形貌: (a) Ti4合金; (b) 合金涂层
    Figure  3.  Cross section SEM morphology of Ti4 alloy and alloy coating oxidation film: (a) Ti4 alloy; (b) alloy coating
    表  3  图 3区域A和区域B能谱分析
    Table  3.  EDS analysis of regions A and B in Fig. 3
    区域 原子数分数/%
    Ti Ni Al Si O
    A 38.20 1.20 7.86 2.68 50.06
    B 8.26 4.86 35.22 3.38 48.28
    下载: 导出CSV 
    | 显示表格

    图 3 (b) 为在860℃下进行40 h氧化处理后得到的合金涂层氧化膜扫描电子显微形貌。从图中可知, 合金涂层与氧化膜之间保持紧密结合状态, 未看到有脱落情况出现。对该涂层进行能谱分析(表 3) 可知, 其表面氧化膜中的元素主要为O、Al, 同时还有部分Si、Ni、Ti, 因此可以推断该氧化膜的主要成分时Al2O3, 此外还含有部分NiO、SiO2、TiO等。因为Al2O3能够形成致密的连续结构, 起到明显抑制O元素扩散的效果, 使合金涂层耐高温抗氧化性能获得显著提高。

    (1) Ti4合金和合金涂层的结合部位形成了熔合线, 可以推断合金涂层和钛合金之间形成了良好的冶金结合状态。同时还可以观察到在涂层的底部区域形成了众多的柱状晶, 涂层中包含了Ti5Si3与Al3Ni2两种主要成分。

    (2) 钛合金的单位面积质量增加值显著高于合金涂层, 可见合金涂层的耐高温氧化性能优于钛合金。经过40 h的高温氧化处理后, 粉末涂层的质量增加值是2.19 mg·cm-2, 比Ti4合金的耐高温氧化性能提高了12倍左右。

    (3) 在860℃下进行40 h氧化处理得到的合金涂层与氧化膜之间保持紧密结合状态, 未看到有脱落情况出现, 氧化膜的主要成分是Al2O3

  • 图  1   电阻率与烧结温度曲线

    Figure  1.   Dependence of electrical resistivity on sintering temperature

    图  2   不同烧结温度下烧结试样显微组织形貌:(a)530 ℃;(b)540 ℃; (c)560 ℃;(d)590 ℃

    Figure  2.   Microstructures of samples sintered at different sintering temperatures: (a) 530 ℃; (b) 540 ℃; (c) 560 ℃; (d) 590 ℃

    图  3   不同烧结温度下烧结试样的含油率和压溃强度

    Figure  3.   Crushing strength and oil content of sintered samples in different sintering time

    图  4   不同烧结时间下烧结试样显微组织形貌:(a)30 min;(b)120 min; (c)150 min;(d)180 min

    Figure  4.   Microstructures of samples sintered in different sintering time: (a) 30 min; (b) 120 min; (c) 150 min; (d) 180 min

    表  1   不同烧结温度下试样的压溃强度及含油率

    Table  1   Crushing strength and oil content of sintered samples at different sintering temperatures

    烧结温度/ ℃ 压溃强度/ MPa 含油率/ %
    530 45.1 20.2
    540 95.7 19.8
    550 131.7 17.5
    560 151.3 16.7
    570 162.2 14.3
    580 197.4 12.0
    590 207.3 8.2
    下载: 导出CSV

    表  2   不同烧结温度下试样的尺寸收缩率

    Table  2   Dimensional change of samples sintered at different sintering temperatures

    烧结温度/ ℃ 轴向变化率/ % 径向变化率/ %
    530 -0.42 -0.21
    540 -0.89 -0.41
    550 -1.21 -0.97
    560 -2.61 -1.17
    570 -3.42 -1.44
    580 -4.90 -2.70
    590 -5.70 -3.10
    下载: 导出CSV
  • [1] 贾成厂. 烧结金属含油轴承. 金属世界, 2011(1): 28 https://www.cnki.com.cn/Article/CJFDTOTAL-JSSJ201101011.htm

    Jia C C. Sintering metal oil bearing. Met World, 2011(1): 28 https://www.cnki.com.cn/Article/CJFDTOTAL-JSSJ201101011.htm

    [2] 董小江, 汪礼敏, 张景怀, 等. 不同形貌部分合金化CuSn10粉末对含油轴承烧结性能的影响. 粉末冶金工业, 2010, 20(4): 28 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201004015.htm

    Dong X J, Wang L M, Zhang J H, et al. Influence of morphology of different partially alloyed CuSn10 powders on the sintering character of self lubricated bearings. Powder Metall Ind, 2010, 20(4): 28 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201004015.htm

    [3] 王博, 査五生, 安旭光. 球磨时间对铝铜含油轴承压溃强度和含油率的影响. 粉末冶金技术, 2014, 32(2): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201402003.htm

    Wang B, Zha W S, An X G. Effects of ball milling time on crushing strength and oil content of Al–Cu oil-impregnated bearing. Powder Metall Technol, 2014, 32(2): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201402003.htm

    [4] 王祝堂, 田荣璋. 铝合金及其加工手册. 3版. 长沙: 中南大学出版社, 2005

    Wang Z T, Tian R Z. Aluminum Alloy and Its Processing Manual. 3rd Ed. Changsha: Central South University Press, 2005

    [5] 王建强, 李国民, 赵洪波. 烧结工艺对铜基粉末冶金摩擦材料的影响. 润滑与密封, 2013, 38(10): 76 DOI: 10.3969/j.issn.0254-0150.2013.10.018

    Wang J Q, Li G M, Zhao H B. The effect of sintered process on Cu-based powder metallurgy friction materials. Lubr Eng, 2013, 38(10): 76 DOI: 10.3969/j.issn.0254-0150.2013.10.018

    [6] 刘锦云, 邹从沛, 査五生, 等. 烧结温度B4C–AlSi共晶合金显微组织结构与抗压强度的影. 核动力工程, 2008, 29(2): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200802013.htm

    Liu J Y, Zou C P, Zha W S, et al. Effect of sintering temperature on microstructure and compressive strength of B4C–AlSi eutectic alloy. Nucl Power Eng, 2008, 29(2): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200802013.htm

    [7] 黄培云. 粉末冶金原理. 北京: 冶金工业出版社, 2008

    Huang P Y. Theory of Power Metallurgy. Beijing: Metallurgical Industry Press, 2008

    [8] 钱杭君. 烧结工艺及合金元素对铜基含油轴承组织与性能的影响[学位论文]. 南京: 南京航空航天大学, 2016

    Qian H J. Effect of Sintering Process and Alloy Element on Microstructure and Mechanical Properties of Cu-based Oil-impregnated Bearing [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016

    [9] 胡绍磊, 查五生, 贾永灿. 铜含量对铝铜烧结材料性能影响. 四川有色金属, 2010(4): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-ACJS201004007.htm

    Hu S L, Zha W S, Jia Y C. Effect of the copper content on Al–Cu sintered materials. Sichuan Nonferrous Met, 2010(4): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-ACJS201004007.htm

    [10] 徐京娟, 邓志煜, 张同俊. 金属物理性能分析. 上海: 上海科学技术出版社, 1988

    Xu J J, Deng Z Y, Zhang T J. Analyses of Physical Properties of Metals. Shanghai: Shanghai Scientific & Technical Publishers, 1988

    [11] 林芸, 柴东朗, 张文兴. Al–Zn、Al–Cu二元合金系烧结过程的对比研究. 粉末冶金工业, 2007, 17(4): 10 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG200704005.htm

    Lin Y, Chai D L, Zhang W X. Study on sintering process of alloys of Al–Zn and Al–Cu binary systems. Powder Metall Ind, 2007, 17(4): 10 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG200704005.htm

    [12] 余瑾, 张燕, 祖方遒, 等. 二元SnZn合金的电阻随温度变化的特性. 中国有色金属学报, 2006, 16(8): 1337 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200608004.htm

    Yu J, Zhang Y, Zu F Q, et al. Change character of electrical resistivity with temperature of Sn–Zn alloys. Chin J Nonferrous Met, 2006, 16(8): 1337 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200608004.htm

    [13] 安旭光, 查五生, 雷宇, 等. 烧结温度对Al–Cu系含油轴承压溃强度、含油率和微观形貌的影响. 粉末冶金技术, 2012, 30(2): 108 DOI: 10.3969/j.issn.1001-3784.2012.02.005

    An X G, Zha W S, Lei Y, et al. Effect of sintering temperature on crushing strength, oil content and microstructure of Al–Cu oil bearing. Powder Metall Technol, 2012, 30(2): 108 DOI: 10.3969/j.issn.1001-3784.2012.02.005

    [14] 黄钧声, 赵欣悦, 志田光明. 烧结工艺对Cu–20Zn黄铜力学性能的影响. 粉末冶金材料科学与工程, 2010, 15(5): 491 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201005015.htm

    Huang J S, Zhao X Y, Shida M. Effect of sintering technology on mechanical properties of Cu–20Zn brass. Mater Sci Eng Powder Metall, 2010, 15(5): 491 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201005015.htm

    [15] 吴树森, 李勇, 毛有武, 等. 烧结工艺对铜基复合材料密度及组织的影响. 特种铸造及有色合金, 2005, 25(10): 579 https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ200510002.htm

    Wu S S, Li Y, Mao Y W, et al. Effects of sintering method on density and microstructure of particulate reinforced copper matrix composites. Spec Cast Nonferrous Alloys, 2005, 25(10): 579 https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ200510002.htm

  • 期刊类型引用(0)

    其他类型引用(4)

图(4)  /  表(2)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  100
  • PDF下载量:  25
  • 被引次数: 4
出版历程
  • 收稿日期:  2018-02-16
  • 刊出日期:  2018-06-26

目录

/

返回文章
返回