-
摘要: 以Al(H2PO4)3溶液为磷酸盐胶黏剂基体,研究了MgO、Al2O3、CuO三种固化剂对胶黏剂固化速率、固化温度、固化气密性的影响,分析了高温煅烧前后MgO和CuO对胶黏剂性能的影响。结果表明:MgO活性大,与Al(H2PO4)3基体反应迅速,不适合用作固化剂;以Al2O3为固化剂的胶黏剂密封性能差,Al2O3也不适合用作固化剂;未煅烧CuO作为磷酸盐胶黏剂的固化剂,反应速率适中且密封性能良好,当Al(H2PO4)3基体与CuO质量比为5.0:4.5时,气密性最好,为0.15 MPa(非上限)。Abstract: Al(H2PO4)3 solution was used as the matrix of phosphate adhesive, the effects of curing agents (MgO, Al2O3, and CuO) on the curing rate, curing temperature, and curing airtightness of adhesive were studied, and the influence of MgO and CuO before and after high temperature curing on the adhesive performance was also discussed. The results show that, MgO is not suitable as the curing agent due to the high activity, resulting in the rapid reaction with Al(H2PO4)3 matrix; Al2O3 is also not suitable used as the curing agent because of the low airtightness. Uncalcined CuO as curing agent shows the advantages of moderate reaction rate and good sealing performance. When the mass ratio of Al(H2PO4)3 matrix to CuO is 5.0:4.5, the adhesive airtightness is 0.15 MPa (not upper limit).
-
Keywords:
- adhesive /
- curing agent /
- airtightness /
- curing temperature /
- calcination
-
-
表 1 MgO煅烧前后对胶黏剂密封性能的影响
Table 1 Effect of MgO on the sealing performance of adhesive before and after calcining
未做高温处理 1200 ℃,煅烧2 h 1500 ℃,煅烧2 h 在室温下,胶料瞬间固化,无法涂刷,放出大量的热量 在室温下,胶料在1 min后完全固化,无法涂刷 胶料在2 min后完全固化,可涂刷2个试件,烧成收缩率大,无气密性 表 2 Al2O3质量分数对胶黏剂密封性能的影响
Table 2 Effect of Al2O3 content by mass on the sealing performance of adhesive
基料与固化剂质量比 胶料状态 气密性 5.0:2.5 在室温下,24 h固化,胶料流动性能好,可涂刷,有裂纹 0 5:3 室温下,24 h固化,胶料流动性能减弱,可涂刷 0.020 MPa 5.0:3.5 室温下,24 h固化,胶料的胶黏性上升,可涂刷 0.053 MPa 5:4 室温下,24 h固化,胶料的胶黏性增大,可涂刷 0.058 MPa 5.0:4.5 室温下,24 h固化,胶料的流动性差,可涂刷,胶黏性强,有裂纹 0 -
[1] 路顺, 林健, 陈江翠. 氧化锆氧传感器的研究进展. 仪表技术与传感器, 2007(3): 1 DOI: 10.3969/j.issn.1002-1841.2007.03.001 Lu S, Lin J, Chen J C. Progress of research on zirconia oxygen sensor. Instrum Tech Sens, 2007(3): 1 DOI: 10.3969/j.issn.1002-1841.2007.03.001
[2] 李重, 向蓝翔, 谢姣容, 等. 钇稳定氧化锆铂电极活化时间对氧化锆氧传感器性能的影响. 材料保护, 2014, 47(10): 39 https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201410016.htm Li C, Xiang L X, Xie J R, et al. Effect of activation time on sensing performance of yttria stabilized zirconia-platinum electrode. Mater Prot, 2014, 47(10): 39 https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201410016.htm
[3] 陈孜, 张雷, 周科朝. 磷酸盐基耐高温无机胶黏剂的研究进展. 粉末冶金材料科学与工程, 2009, 14(2): 74 DOI: 10.3969/j.issn.1673-0224.2009.02.002 Chen Z, Zhang L, Zhou K C. Research progress of phosphate inorganic binder for high temperature resistance. Mater Sci Eng Powder Metall, 2009, 14(2): 74 DOI: 10.3969/j.issn.1673-0224.2009.02.002
[4] Wang M C, Zhuang M M, Tao X, et al. High temperature bonding effect of the room-temperature-curing phosphate adhesive for C/C composites. Key Eng Mater, 2016, 680: 179 DOI: 10.4028/www.scientific.net/KEM.680.179
[5] 张新荔, 吴义强, 李贤军. 硅酸盐胶黏剂的研究与应用. 化工新型材料, 2014, 42(10): 233 https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201410079.htm Zhang X L, Wu Y Q, Li X J. Research and application of silicate adhesive. New Chem Mater, 2014, 42(10): 233 https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201410079.htm
[6] Zhou X, Yang J Z, Su D P, et al. The high-temperature resistant mechanism of α-starch composite binder for foundry. J Mater Process Technol, 2009, 209(14): 5394 DOI: 10.1016/j.jmatprotec.2009.04.010
[7] 韩爽, 曹先启, 张广鑫, 等. 醇溶性磷酸盐胶黏剂高温粘接性能研究. 化学与黏合, 2017, 39(4): 275 DOI: 10.3969/j.issn.1001-0017.2017.04.011 Han S, Cao X Q, Zhang G X, et al. High temperature bonding performance of alcohol soluble phosphate adhesive. Chem Adhes, 2017, 39(4): 275 DOI: 10.3969/j.issn.1001-0017.2017.04.011
[8] Hao R, Liu J, Wang M, et al. Tensile strength and bonding mechanism of the mullite eramic/ceramic sample joined by phosphate adhesive // Advanced Ceramic Materials Proceedings. Taiyuan, 2012: 571 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGCZ201207011012.htm
[9] 陈正中, 王晨. 无机磷酸盐胶粘剂的研究进展. 化工中间体, 2009, 5(4): 12 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJTY200904007.htm Chen Z Z, Wang C. Development and application of inorganic phosphate adhesive. Chem Intermed, 2009, 5(4): 12 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJTY200904007.htm
[10] 贺孝先, 晏成栋, 孙争光. 无机胶黏剂. 化学工业出版社, 2003 He X X, Yan C D, Sun Z Z. Inorganic Adhesive. Chemical Industry Press, 2003
[11] 侯运城, 范君怡, 蔡永源. 我国胶粘剂工业现状及应用进展. 热固性树脂, 2009, 24(4): 55 DOI: 10.3969/j.issn.1002-7432.2009.04.014 Hou Y C, Fan J Y, Cai Y Y. Chinese adhesive industry status and application progress. Thermoset Resin, 2009, 24(4): 55 DOI: 10.3969/j.issn.1002-7432.2009.04.014
[12] 孙世清, 谢维章. 用热分析方法研究MgO的活性. 硅酸盐学报, 1986, 14(2): 226 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB198602014.htm Sun S Q, Xie W Z. Study on the activity of MgO by thermal analysis. J Chin Ceram Soc, 1986, 14(2): 226 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB198602014.htm
[13] Hipedinger N E, Scian A N, Aglietti E F. Magnesia– phosphate bond for cold-setting cordierite-based refractories. Cem Concr Res, 2002, 32(5): 675 DOI: 10.1016/S0008-8846(01)00725-6
[14] 崔韶丽, 陈宁, 霍冀川. 磷酸铝系晶型转变与控制的研究进展. 人工晶体学报, 2013, 42(1): 93 DOI: 10.3969/j.issn.1000-985X.2013.01.017 Cui S L, Chen N, Huo J C. Research advance on the crystal transformation and control of aluminum phosphate dystem. J Synth Cryst, 2013, 42(1): 93 DOI: 10.3969/j.issn.1000-985X.2013.01.017
[15] Zou C, Zhang D H, Li Y, et al. Phase evolution of aluminum-chromium-phosphate binders during heat-treatment. Key Eng Mater, 2007, 336-338: 1280 DOI: 10.4028/www.scientific.net/KEM.336-338.1280
[16] 余历军, 雷阎盈, 俞强, 等. 氧化铜–磷酸盐胶粘剂粘接机理的剖析与探讨. 粘接, 1998(6): 5 https://www.cnki.com.cn/Article/CJFDTOTAL-NIAN199806001.htm Yu L J, Lei Y Y, Yu Q, et al. Study on adhesive mechanism of inorganic phosphate and copper oxide adhesive. Adhesion, 1998(6): 5 https://www.cnki.com.cn/Article/CJFDTOTAL-NIAN199806001.htm
[17] 汤旭相, 李瑞安. 氧化铜及其与磷酸反应产物的研究. 粘接, 1985, 6(2): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-NIAN198502001.htm Tang X X, Li R A. Studies on copper oxide and the reactants reacted it with phosphoric acid. Adhesion, 1985, 6(2): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-NIAN198502001.htm
-
期刊类型引用(0)
其他类型引用(2)