Research on production technology of nonmagnetic Fe-Mn alloy powders by water atomization
-
摘要: 采用水雾化法制备铁锰无磁合金粉末, 分析了合金粉末含锰质量分数和雾化工艺对铁锰合金粉末性能的影响规律。结果表明: 水雾化法生产铁锰无磁合金粉的方案可行, 但锰质量分数不宜低于24%;在实验工况条件下, 雾化压力对松装密度的影响可以忽略不计, 雾化压力提高使产品流动性变差, 以15 MPa雾化压力进行生产时, 产品工艺性能(松装密度、流动性) 最好; 雾化压力的提高有助于提高产品烧结密度, 在满足产品流动性要求的前提下, 可以考虑通过提高雾化压力来提高产品烧结密度。Abstract: Nonmagnetic Fe-Mn alloy powders were prepared by water atomization method. The influences of manganese contents by mass and water atomizing parameters on the properties of Fe-Mn alloy powders were investigated. The results show that, the nonmagnetic Fe-Mn alloy powders can be prepared by water atomization process when the manganese content by mass is below 24%. Under the laboratory conditions, the effect of atomizing pressure on loose density of Fe-Mn alloy powders is negligible, but the flow ability of powders gets worse when the atomizing pressure increases. The best properties of loose density and flow ability are achieved when the atomizing pressure is 15 MPa. The higher atomizing pressure can improve the sintering density of alloy powders, thus, on the premise of flow ability, the sintering density can be improved by increasing the atomizing pressure.
-
-
表 1 性能测试项目
Table 1 Performance test schedule
锰质量分数/% 磁重比 粒度 松装密度 流动性 烧结密度 18 √ — — — √ 22 √ — — — √ 24 √ √ √ √ √ 26 √ — — — √ 30 √ — — — √ -
[1] 李长生, 马彪, 宋艳磊, 等. 无磁钢的研究概况和我国无磁钢的发展思路. 河南冶金, 2014, 22(1): 1 DOI: 10.3969/j.issn.1006-3129.2014.01.001 Li C S, Ma B, Song Y L, et al. The research progress and development ideas of non-magnetic steels in China. Henan Metall, 2014, 22(1): 1 DOI: 10.3969/j.issn.1006-3129.2014.01.001
[2] 初福民, 李长龙, 李明弟. 锰系无磁铸铁的研制. 热加工工艺, 2002(6): 48 DOI: 10.3969/j.issn.1001-3814.2002.06.021 Chu F M, Li C L, Li M D. Research on manganese subgroup nonmagnetic cast iron. Hot Working Technol, 2002(6): 48 DOI: 10.3969/j.issn.1001-3814.2002.06.021
[3] 张军. 无磁发动机材料体系的设计与研究, 武汉: 华中科技大学, 2007 Zhang J. Design and Selection of Material System for Non-magnetic Engine[Dissertation]. Wuhan: Huazhong University of Science and Technology, 2007
[4] 张旭东, 谢斌, 邹颖, 等. 电动机护环锻件的制造工艺. 大型铸锻件, 2016(4): 49 DOI: 10.3969/j.issn.1004-5635.2016.04.015 Zhang X D, Xie B, Zou Y, et al. Manufacturing process of retaining ring forging for electric motor. Heavy Cast Forg, 2016(4): 49 DOI: 10.3969/j.issn.1004-5635.2016.04.015
[5] 刘贺. 超大型变截面内孔空心主轴锻件锻造工艺研究. 大型铸锻件, 2015(6): 39 DOI: 10.3969/j.issn.1004-5635.2015.06.013 Liu H. Research on forging process of ultra large variable cross-section hollow spindle forgings. Heavy Cast Forg, 2015(6): 39 DOI: 10.3969/j.issn.1004-5635.2015.06.013
[6] 赵小巍. 发动机无磁材料的可切削加工性研究, 武汉: 华中科技大学, 2008 Zhao X W. Study on Machinability of Non-magnetic Materials Used in Engine[Dissertation]. Wuhan: Huazhong University of Science and Technology, 2008
[7] Ermakov B S, Khoroshailov V G. Influence of alloy elements on the properties of manganese steels in the293-4°K temperature range. Met Sci Heat Treat, 1985, 27(3): 213. DOI: 10.1007/BF00699655
[8] Bae C, Kim R, Lee U H, et al. Precipitation effect on mechanical properties and phase stability of high manganese steel. Metall Mater Trans A, 2017, 49: 4072. DOI: 10.1007/s11661-017-4168-9
[9] 宋部军, 王俊国, 白海虎. 高锰无磁钢40Mn18Cr3的冶炼. 中国重型装备, 2015(1): 40 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJK201501022.htm Song B J, Wang J G, Bai H H, et al. Melting of high Mn and nonmagnetic steel 40Mn18Cr3. China Heavy Equip, 2015(1): 40 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJK201501022.htm
[10] 李长生, 徐新芳, 马彪, 等. 30Mn26Al4V高锰无磁钢的实验研究. 中国科技论文, 2012, 7(2): 89 DOI: 10.3969/j.issn.2095-2783.2012.02.002 Li C S, Xu X F, Ma B, et al. Experimental study on the non-magnetic high magnetism steel 30Mn26Al4V. China Sciencepap, 2012, 7(2): 89 DOI: 10.3969/j.issn.2095-2783.2012.02.002
[11] 王敏, 周超梅, 姚长贵, 等. 高锰无磁钢50Mn18Cr4V的研究. 热加工工艺, 2008, 37(18): 69 DOI: 10.3969/j.issn.1001-3814.2008.18.023 Wang M, Zhou C M, Yao C G, et al. Study on50Mn18Cr4V steel with high manganese and low magnetic. Hot Working Technol, 2008, 37(18): 69 DOI: 10.3969/j.issn.1001-3814.2008.18.023
[12] Yu X, Wen G H, Tang P, et al. Behavior of mold slag used for 20Mn23Al nonmagnetic steel during casting. J Iron Steel Res Int, 2011, 18(1): 20. DOI: 10.1016/S1006-706X(11)60005-8
[13] Sipos K, Remy L, Pineau A. Influence of austenite predeformationon mechanical properties and strain-induced martensitic transformations of a high manganese steel. Metall Trans A, 1976, 7(5): 857. DOI: 10.1007/BF02644083
[14] 马贵斌. 采用精益六西格玛方法提高无磁钢A磁导率合格率. 山西冶金, 2016(4): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-SDYZ201604012.htm Ma G B. Improving the qualification of magnetic conductivity of nonmagnetic steel A based on the method of the lean six sigma. Shanxi Metall, 2016(4): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-SDYZ201604012.htm
[15] 宋艳萍. 无磁钢磁性衬板强化及其机理研究, 镇江: 江苏科技大学, 2013 Song Y P. Research on Non-magnet Magnetic Liner Strengthen and its Mechanism[Dissertation]. Zhenjiang: Jiangsu University of Science and Technology, 2013
[16] Neal M, Raman B, Patrick K. MIM Fe-2Ni-0.8C的烧结. 粉末冶金技术, 2016, 34(3): 232 DOI: 10.3969/j.issn.1001-3784.2016.03.015 Neal M, Raman B, Patrick K. Sintering of MIMFe-2Ni-0.8C. Powder Metall Technol, 2016, 34(3): 232 DOI: 10.3969/j.issn.1001-3784.2016.03.015
[17] 顾毅, 李辉, 蒋鑫, 等. 硅铁在水雾化铁铜40粉末生产中的脱氧应用研究. 金刚石与磨料磨具工程, 2016, 36(3): 69 https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM201603014.htm Gu Y, Li H, Jiang X, et al. Research on application of silicon in iron-copper alloy powder production by atomization process. Diamond Abras Eng, 2016, 36(3): 69 https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM201603014.htm
[18] 陆松华. Fe-Mn基奥氏体无磁钢在节能电力金具上的应用研究, 镇江: 江苏大学, 2006 Lu S. Research on the Application of Fe-Mn Based Austenite Non-magnetic Steel in Energy-saving Electric Power Fittings[Dissertation]. Zhenjiang: Jiangsu University, 2006
[19] 李志翔, 曹菊艳, 俊涛, 等. 高锰钢生产关键工艺控制措施. 铸造, 2008(1-2): 80 https://www.cnki.com.cn/Article/CJFDTOTAL-JXRG2008Z1034.htm Li Z X, Cao J Y, Jun T, et al. The key factor of high manganese steel production process control measures. Casting, 2008(1-2): 80 https://www.cnki.com.cn/Article/CJFDTOTAL-JXRG2008Z1034.htm
[20] 阮建明, 黄培云. 粉末冶金原理. 北京: 机械工业出版社, 2012 Ruan J M, Huang P Y. Powder Metallurgy Principle. Beijing: China Machine Press, 2012
[21] 解传娣, 陈文. 水雾化Cu-0.3La预合金粉制备工艺研究. 粉末冶金技术, 2011, 29(4): 279 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201104009.htm Xie C D, Chen W. Study on production process of water atomized copper-0.3 lanthanum powders. Powder Metall Technol, 2011, 29(4): 279 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201104009.htm
[22] 吴文恒, 吴凯琪, 肖逸凡, 等. 气雾化压力对3D打印用316L不锈钢粉末性能的影响. 粉末冶金技术, 2017, 35(2): 83 DOI: 10.3969/j.issn.1001-3784.2017.02.001 Wu W H, Wu K Q, Xiao Y F, et al. Effect of atomization pressure on the properties of 316L stainless steel powders used in 3D printing. Powder Metall Technol, 2017, 35(2): 83 DOI: 10.3969/j.issn.1001-3784.2017.02.001
-
期刊类型引用(2)
1. 白云飞,陈德庆,李光,吴镇宏,银锐明,李鹏飞. Cr_2O_3-Y_2O_3-MgO三元烧结助剂对99氧化铝陶瓷微波介电及绝缘性能的影响. 硬质合金. 2024(04): 297-302+309 . 百度学术
2. 肖强,肖军. 不同复相添加剂和烧结条件对90氧化铝陶瓷性能的影响. 山东陶瓷. 2018(04): 7-10 . 百度学术
其他类型引用(1)