Effect of tightly coupled gas atomization parameters on the properties of metal powders used for 3D printing
-
摘要: 利用自主设计研发的紧耦合雾化制粉装置,采用真空感应熔炼气雾化工艺制备3D打印用Inconel 625合金粉末,通过调整雾化参数研究导液管内径对粉末粒度分布、表面形貌、氧含量(质量分数)及流动性能等特性的影响。结果表明:使用紧耦合雾化制粉装置制备出的粉末粒度范围较广,收得率较高,其中尺寸小于53 μm的粉末收得率可达50%以上,粉末球形度较好,且卫星球少。随导液管内径的增加,粉末收得率降低,粉末中的氧含量(质量分数)也呈明显下降趋势。所制得的粉末能够满足不同金属3D打印设备对粉末材料性能的要求。Abstract: Inconel 625 metal powders used for 3D printing were prepared by vacuum inert gas atomization (VIGA), using the independently developed and designed tightly coupled gas atomization device. By adjusting the atomization parameters, the effects of the inner diameter of delivery tubes on the particle size distribution, surface morphology, oxygen content (mass fraction), and flowability of the metal powders were investigated. The results show that, the high quality Inconel 625 metal powders can be obtained by the tightly coupled gas atomization device, showing a wide range of particle size distribution and a high powder yield with good sphericity and fewer satellite spheres, the yield of the metal powders smaller than 53 μm can reach more than 50%. With the increase in the inner diameter of the delivery tubes, the yield of the metal powders reduces, and the oxygen content (mass fraction) decreases obviously. The prepared metal powders used in the different 3D printing devices can meet the performance requirements for the powder materials.
-
3D打印技术,又称增材制造(additive manufacturing,AM),是相对于传统机加工等“减材制造”技术而言的,是基于离散/堆积原理,通过材料的逐渐累积来实现制造的技术。3D打印技术利用计算机将成形零件的3D模型切成一系列一定厚度的“薄片”,通过3D打印设备自下而上地制造出每一层“薄片”,最后叠加成形出三维实体零件。这种制造技术无需传统的刀具或模具,可以实现传统工艺难以或无法加工的复杂结构的制造,并且可以有效简化生产工序,缩短制造周期[1]。
1986年,美国3D Systems创始人Charles Hull开发了第一台商业3D印刷机,由此3D打印技术进入了一个快速发展的时期。目前,该技术在建筑、汽车工业、航空航天、船舶工业、能源、医疗、教育、土木工程以及其他领域都有广泛的应用[2−3]。2014年8月31日,美国宇航局进行了3D打印火箭喷射器的测试,验证了3D打印技术在火箭发动机制造上的可行性,也正面验证了3D打印可应用于燃气轮机行业的可能性[4−6]。2017年,美国通用电气公司宣布由3D打印技术制备的最大燃气轮机9HA.02可以以64%的效能运行,打破了能源行业的记录,并利用3D打印技术为涡轮机制造了多个部件。2018年,德国西门子股份公司成功为其航空改型燃气轮机SGT-A05进行了3D打印和发动机测试。
金属3D打印技术在高温合金燃气轮机方面的应用愈显重要。GTD222作为一种新型的镍基沉淀硬化型等轴晶铸造高温合金,具有1000 ℃以上的使用温度、中等高温强度、良好的抗蠕变和抗疲劳性能、优异的高温抗氧化和耐腐蚀性能、良好的铸造和焊接工艺性能以及优秀的长期时效组织稳定性,被应用于航空航天、能源等重大领域。
气雾化法作为国内常用的制粉技术之一,具有生产效率高、成本低等优点,能够制备粒度小、球形度好、纯净度高的金属与合金粉末[7−9]。上世纪80年代中期,瑞典的研究者通过对限制型喷嘴的研究发现,增加气压可以减小粉末的平均粒径,但由于气体速度和压力接近线型关系,当气压超过5 MPa后,其速度增加很少,而且增加气压还明显增加气体消耗量。因此,在限制型喷嘴中雾化气体压力一般不超过5.5 MPa,限制了雾化效率的进一步提高[10]。提高雾化效率的另一个可行方法是增加气体动能的传输效率。根据这一思想,研究者对限制型喷嘴结构进行了改进,提出了紧耦合气雾化的概念。本文选用紧耦合式环缝雾化喷嘴作为核心部件,在保证雾化压力等参数一定的情况下,研究不同进气方式对GTD222高温合金粉末性能的影响。
1. 粉末制备与实验方法
1.1 工艺路线
实验用GTD222高温合金熔炼用原料采用同一批原料,其化学成分如表1所示。GTD222高温合金粉末制备的工艺路线是:GTD222高温合金原料→真空感应熔炼→惰性气体雾化→粉末收集→粉末筛分分级→粒度配比。
表 1 GTD222高温合金原料的化学成分(质量分数)Table 1. Chemical composition of the GTD222 superalloys% Ni C Cr Co W Al Ti Nb B Ta Zr O 余量 0.1 22.73 18.95 1.9 1.19 2.35 0.86 0.0053 1.06 0.012 0.0013 实验采用的是真空感应熔炼紧耦合气雾化技术,具有定量的金属液流直径,金属液流有过热度,因而漏嘴直径、进气方式、喷嘴结构、钢液温度和雾化压力等参数对粉末的形貌及粒度都具有直接的影响。本文主要研究进气方式对粉末形貌、粉末粒度及其分布的影响。
1.2 雾化参数
在气雾化技术中,喷嘴外套的进气口一般分为单向进气和双向进气,双向进气结构相对于单向而言,更有利于气室内压力的对称性分布,因此本文选择双向进气结构的喷嘴外套来进行此次对比实验。喷嘴内外套的进气方向主要分为垂直进气和切向进气,本文采用外直内直、外直内切、外切内直及外直内切四种进气组合来研究不同进行方式对粉末性能的影响规律,如图1所示。
在雾化设备安全运行参数范围内,选定如下固定参数:钢液保温温度(1620±20) ℃,保温时间20 min,漏包温度(1060±30) ℃,雾化介质为氮气或氩气,雾化压力3.0 MPa,选定的进气方式如表2所示。
表 2 不同进气方式组合Table 2. Combination of the gas inlets编号 进气方式 A 外直内直 B 外切内直 C 外直内切 D 外切内切 1.3 实验方法
根据国家标准GB/T 5314[11]《粉末冶金用粉末 取样方法》进行取样,对粉末样品进行化学元素分析。根据国家标准GB/T 19077.1[12]《粒度分析 激光衍射法 第1部分:通则》,采用Mastersizer2000激光粒度分析仪对3D用金属粉体材料的粒径及粒度分布进行测试,测定粉末颗粒的表面积等效直径(dS,D[3,2])和颗粒的体积等效直径(dV,D[4,3]),进而得到粉末的平均球形度Q=dS/dV。利用场发射扫描电子显微镜QUANTA400FEG观察粉末的表面形貌。按照GB/T1482[13]《金属粉末 流动性的测定 标准漏斗法(霍尔流速计)》标准,采用霍尔流速计对3D打印用金属粉末进行流动性测定。根据GB/T1479.1[14]《金属粉末 松装密度的测定 第1部分:漏斗法》,采用霍尔流速计对3D打印用金属粉末的松装密度进行测试。
2. 结果与讨论
2.1 不同进气方式对GTD222高温合金粉末化学成分的影响
对四种进气方式下得到的GTD222高温合金粉末进行筛分,选取其中53 μm以下的粉末进行化学成分测定,检测结果如表3所示。对比四种不同进气方式制备的GTD222高温合金粉末的化学成分可以看出,主要元素的成分差别很小,C、Al、Ti元素的烧损程度较低,说明在真空环境和氩气的保护下,未有较多空气进入炉内与合金发生反应,保证了粉末的低氧与低氮。随着进气方式的改变,粉末中氧含量出现了相应的变化,其中A最低,D最高。在确定没有较多外界氧气与合金反应的情况下,雾化得到的粉末越细,比表面积越大,吸附游离氧更多,导致氧元素含量增大。由此反推,A得到的粉末最粗,D得到的粉末最细。
表 3 不同进气方式GTD222高温合金粉末的化学成分(质量分数)Table 3. Chemical composition of the GTD222 superalloy powders prepared by the different gas inlets% 进气方式 C Cr Co W Al Ti Nb B Ta Zr O A 0.07 22.56 18.85 1.8 1.12 2.34 0.88 0.0052 1.03 0.012 0.0132 B 0.09 22.37 18.90 1.9 1.14 2.29 0.85 0.0055 1.02 0.013 0.0175 C 0.08 22.45 18.88 1.7 1.11 2.31 0.86 0.0054 1.05 0.012 0.0195 D 0.08 22.18 18.93 1.9 1.13 2.33 0.87 0.0053 1.02 0.011 0.0283 根据对3D打印用GTD222高温合金粉末化学成分的分析研究,适用于3D打印的高温合金粉末的氧含量(质量分数)都低于0.05%,本文采用雾化制粉设备适合于制备低氧含量的金属粉末,在四种制粉进气方式下制备的GTD222高温合金粉末氧含量都小于0.05%,能够满足3D打印技术对于低含氧量的要求。
2.2 不同进气方式对GTD222高温合金粉末粒径分布的影响
对四种进气方式下制备的GTD222高温合金粉末进行粒度分析测定,结果如表4所示。由表可知,四种进气方式得到的粉末粒度按A、B、C、D顺序依次减小,其中A、B小于53 μm的粉末收得率都低于40%,这进一步验证了上述氧含量与粒径的相关规律。对四种进气方式进行冷态测试,结果如表5所示,发现在相同雾化压力下,A、B、C、D进气方式在喷嘴处的抽吸力逐渐增强,说明相对垂直进气结构而言,切向进气结构喷嘴抽吸力得到了较大提升,且雾化气流具有较强的剪切力,更有利于粉末的细化。从图2粒径累积分布曲线可以看出,粒径累积分布曲线随着进气方式的变化而向左发生偏移,粉末的粒径变小。
表 4 不同进气方式GTD222高温合金粉末的粒度累积分布Table 4. Size distribution of the GTD222 superalloy powders prepared by the different gas inlets进气方式 粒度累积分布 / % D50 / μm 3 μm 15 μm 30 μm 40 μm 53 μm 70 μm 80 μm 105 μm A 0.13 1.23 13.23 24.24 35.72 53.87 62.15 78.30 66.78 B 0.20 1.58 14.30 25.36 38.05 57.23 65.81 81.82 63.65 C 0.11 1.73 16.49 28.43 44.47 60.93 67.47 84.12 57.98 D 0.23 2.14 22.56 35.25 47.54 63.72 71.26 87.22 55.35 注:D50为粉末的平均粒径 表 5 不同进气方式喷嘴口的抽吸力变化Table 5. Suction change of the nozzle under the different gas inlets进气方式 抽吸力 / kPa A −42.25 B −48.36 C −57.77 D −63.58 进气方式C和D制备的GTD222高温合金粉末在105 μm以下粉末收得率接近90%,小于53 μm的粉末收得率均高于40%,细粉收得率高。市场上几乎所有的3D打印成形设备都要求粉末粒径≤53 μm,有的甚至要求粒径≤45 μm,因此细粉收得率直接决定了粉末的利用率。A进气方式制备的粉末利用率最低,导致制备成本很高,无法实现大批量规模化生产,C和D进气方式制得粉末的利用率较高,并且这两种进气方式制备的粉末粒径较为接近。然而在实际3D打印过程中,耗材选择方面更偏向于氧含量较低的一方,C的氧含量明显低于D,因此C进气方式更适合制备3D打印用GTD222高温合金粉末。
2.3 不同进气方式对GTD222高温合金粉末球形度、流动性及松装密度等性能的影响
对不同进气方式制备的GTD222高温合金粉末的球形度、流动性以及松装密度进行测定,结果如表6所示,可以发现D进气方式制备的粉末球形度最高,A进气方式制备的粉末流动性最好,四种进气方式制备的粉末松装密度相差很小。
表 6 不同进气方式下GTD222高温合金粉末的球形度、流动性和松装密度Table 6. Sphericility, fluidity, and loose packed density of the GTD222 superalloy powders prepared by the different gas inlets进气方式 球形度 流动性 / [s∙(50 g)−1] 松装密度 / (g∙cm−3) A 0.70 21.23 4.65 B 0.73 23.51 4.68 C 0.77 26.15 4.63 D 0.79 28.23 4.66 在电子扫描显微镜下对四种进气方式制备的GTD222高温合金粉末进行观察,结果如图3所示。A、B、C、D四种进气方式制备的合金粉末基本呈球形颗粒,并且一部分小颗粒粉末粘连、团聚形成“卫星球”粉末,大部分的细小颗粒粉末发生了团聚,随着粉末整体粒度的降低,细小颗粒粉末的比例增加,同样粘连团聚的粉末比例也增加,流动性随之降低。
颗粒表面凝固组织为树枝晶和胞状晶组织,其中大尺寸粉末表面为发达枝晶组织,晶粒较粗大,表面附着的“卫星球”粉末尺寸较大;中等尺寸粉末表面为树枝晶和胞状晶的混合组织,表面光滑平整,没有“卫星球”粉末,随着粉末尺寸的减小,粉末表面组织由树枝晶向胞状晶转变,粉末球形度高,组织趋于细化平整,减小粉末的使用尺寸,粉末中胞晶组织比例将增加,枝晶组织减少,枝晶偏析得到弱化,粉末的组织和成分分布更为均匀[15]。
3. 结论
(1)采用真空感应熔炼气雾化技术制备的GTD222高温合金粉末氧含量(质量分数)低、球形度高、流动性好,能满足3D打印对粉末的综合需求。
(2)通过改变雾化喷嘴的进气方式可以获得不同粒径分布、颗粒形貌的GTD222高温合金粉末。切向进气方式能够有效提高细粉收得率。
(3)最佳雾化工艺参数为进气方式外直内切,保温温度(1620±20) ℃,保温时间20 min,漏包温度(1060±30) ℃,高纯氩气雾化,雾化压力3.0 MPa。按此雾化工艺制备的GTD222高温合金粉末的氧含量(质量分数)低于0.02%,球形度较高,流动性和松装密度满足3D打印对金属粉末的要求。
-
表 1 Inconel 625合金化学成分(质量分数)
Table 1 Chemical composition of Inconel 625 alloys
% Cr Nb Mo Ti Al Ni 21.50 3.65 9.50 0.20 0.30 余量 表 2 不同导液管内径下Inconel 625合金粉末的流动性
Table 2 Flowability of the Inconel 625 alloy powders in the different inner diameter of delivery tubes
导液管内径 / mm 流动性 / [s·(50 g)−1] 3.0 19.36 3.5 16.50 4.0 16.12 4.5 14.25 5.0 14.39 5.5 14.08 6.0 12.56 -
[1] 姚妮娜, 彭雄厚. 3D打印金属粉末的制备方法. 四川有色金属, 2013, 12(4): 48 Yao N N, Peng X H. The preparation method of metal powder for 3D printing. Sichuan Nonferrous Met, 2013, 12(4): 48
[2] 吴文恒, 吴凯琦, 肖逸凡, 等. 气雾化压力对3D打印用316L不锈钢粉末性能的影响. 粉末冶金技术, 2017, 35(2): 83 DOI: 10.3969/j.issn.1001-3784.2017.02.001 Wu W H, Wu K Q, Xiao Y F, et al. Effects of atomization pressure on the properties of 316L stainless steel powders used in 3D printing. Powder Metall Technol, 2017, 35(2): 83 DOI: 10.3969/j.issn.1001-3784.2017.02.001
[3] Lawley A. Atomization: the Production of Metal Powders. Princeton: Metal Powder Industry, 1992
[4] 陈欣. 紧耦合气雾化流场结构和雾化机理研究[学位论文]. 长沙: 中南大学, 2007 Chen X. Study on Structure and Atomization Mechanism of Tightly Coupled Aerosol Flow Field [Dissertation]. Changsha: Central South University, 2007
[5] Karapatis P. A sub-process approach of selective laser sintering. EPFL, 2002, 7(4): 11
[6] 许天旱, 王党会. 雾化器导液管内径对无铅焊锡粉末形貌及粒度分布的影响. 粉末冶金技术, 2009, 27(3): 197 Xu T H, Wang D H. Effect of inner diameter of liquid guide tube of atomizer on morphology and particle size distribution of lead-free solder powder. Powder Metall Technol, 2009, 27(3): 197
[7] 张维涛. 双级耦合雾化法制备合金粉末的研究[学位论文]. 兰州: 兰州理工大学, 2013 Zhang W T. Research on Preparation of Alloy Powder by Two-Stage Coupling Atomization [Dissertation]. Lanzhou: Lanzhou University of Technology, 2013
[8] Schulz G. Some applications of ultrafine, gas atomized metal powder beyond classical powder metallurgy//Proceedings of 2000 Powder Metallurgy World Congress. Kyoto, 2000: 475
[9] Spierings A B, Herres N, Levy G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp J, 2011, 17(3): 195 DOI: 10.1108/13552541111124770
[10] 黄培云. 粉末冶金原理. 北京: 冶金工业出版社, 1997 Huang P Y. Theory of Power Metallurgy. Beijing: Metallurgical Industry Press, 1997
[11] Yuan W H, Che Z H, Huang P Y. Preparation of heat-resistant aluminum alloy pipe blanks by multi-layer spray deposition. Trans Nonferrous Met Soc China, 2000, 10(4): 460
[12] Ünal A. Effect of processing variables on particle size in gas atomization of rapidly solidified aluminum powders. Mater Sci Technol, 1987, 3(12): 1029 DOI: 10.1179/mst.1987.3.12.1029
[13] Ünal A. Influence of nozzle geometry in gas atomisation of rapidly solidified aluminium alloys. Mater Sci Technol, 1988, 4(10): 909 DOI: 10.1179/mst.1988.4.10.909
[14] 沈英俊, 季道馨, 徐永利, 等. 若干雾化参数的理论简析. 粉末冶金技术, 1995, 13(1): 21 Shen Y J, Ji D X, Xu Y L, et al. Theoretical analysis of several atomization parameters. Powder Metall Technol, 1995, 13(1): 21
[15] 郭景杰, 傅恒志. 合金熔体及其处理. 北京: 机械工业出版社, 2005 Guo J J, Fu H Z. Alloy Melt and its Treatment. Beijing: Machine Press, 2005
[16] Loria E A. Superalloy 718: Metallurgy and applications//Proceedings of the International Symposium. Pittsburgh, 1989: 7
[17] Rizzo F J, Radavich J. Proceedings of the second international symposium on superalloy 718, 625, 706 and various derivatives//Annual Meeting and Exhibition of the Minerals, Metals and Materials Society. Warrendale, 1991: 297
-
期刊类型引用(6)
1. 赵子锐,段绪星,陈青,任维泽,林益文,裴泽宇. 镍基合金激光熔覆研究进展及其在反应堆的应用展望. 激光杂志. 2025(02): 1-9 . 百度学术
2. 姚开礼,高丽. 激光编程技术在汽车模具淬火过程中的参数优化与控制研究. 模具制造. 2024(01): 92-95 . 百度学术
3. 范仲华. 电磁场辅助激光熔覆制备IN718涂层的组织及性能研究. 工程机械. 2024(03): 158-162+13 . 百度学术
4. 王进才,霍晓阳,李雷,樊贝贝,米国发. 激光增材再制造20G/Inconel625复合板工艺研究. 特种铸造及有色合金. 2022(01): 99-103 . 百度学术
5. 王贵. 镍基合金粉末热喷涂后收缩气孔的研究. 冶金与材料. 2022(04): 10-12 . 百度学术
6. 王进才,霍晓阳,李雷,樊贝贝,米国发. Inconel625及其去Mo和Alloy686粉末激光熔凝性能研究. 特种铸造及有色合金. 2022(10): 1256-1262 . 百度学术
其他类型引用(5)