Effect of manganese source powders on microstructure and mechanical properties of Fe-Mn-C sintered steel
-
摘要: 以电解锰粉和Fe-76% Mn粉末(质量分数)为原料,在600℃和70% N2+30% H2混合气体(体积分数)管式炉中氮化得到三种抗氧化含氮锰源粉末(Mn-3% N、Mn-5% N和FeMn-3% N,质量分数),研究锰含量以及锰源粉末种类对压制烧结Fe-Mn-C烧结钢组织和力学性能的影响。研究表明:使用氮化锰源粉末制备的Fe-Mn-C烧结钢的力学性能明显优于采用电解锰粉为原料制备的同类材料,随着锰源粉末中N含量的升高,烧结钢烧结膨胀率减小,对合金的强化作用增加。以Mn-5% N作为锰源制备的Fe-2Mn-0.5C烧结钢,其拉伸强度为576 MPa,断后延伸率为3.8%,与电解锰粉为锰源相比,烧结钢的拉伸强度和断后延伸率分别提升了29%和123%。使用氮化锰粉作为锰源的烧结钢内孔隙数量减小,珠光体增多,片层间距降低。Abstract: Using the electrolytic manganese powders and Fe-76%Mn powders (mass fraction) as the raw materials, the antioxidative nitrogen-manganese source powders (Mn-3%N, Mn-5%N, and FeMn-3%N, mass fraction) were prepared in the tube furnace with 70%N2 + 30%H2 gas (volume fraction) at 600 ℃, the effects of the manganese mass fraction and the type of manganese source powders on the microstructure and mechanical properties of the Fe-Mn-C sintered steels were investigated. In the results, the mechanical properties of the Fe-Mn-C sintered steels prepared by the nitrogen-manganese source powders are obviously better than those prepared by the electrolytic manganese powders. With the increase of the nitrogen mass fraction in the manganese source powders, the sintering expansion rate of the sintered steels decreases, and the strengthening of the Fe-Mn-C alloy is increased. The tensile strength of the Fe-2Mn-0.5C sintered steels prepared by Mn-5%N powders is 576 MPa, and the fracture elongation is 3.8%, which is improved by 29% and 123%, respectively, compared with those prepared by the electrolytic manganese powders. The number of pores in the sintered steels prepared by the nitrogen-manganese source powders decreases, the pearlite increases, and the lamellar spacing decreases.
-
Keywords:
- sintered steels /
- manganese powders /
- nitrogenization /
- mechanical properties /
- microstructure
-
铜具有极高的热导率,被广泛应用于快速热交换领域。铜合金被广泛应用于航天、核反应及冶金等需要先进主动冷却的工业领域[1–3]。铜合金的导热导电性能和力学性能是一对矛盾特性,高强高导铜合金的研究目标是在保持较高导热性能的同时尽可能提高力学性能[4‒5]。
目前各国研究和开发的高强高导铜合金主要包括Cu–Fe系、Cu–Ni系、Cu–Nb系和Cu–Cr系合金。Cu–Ni–Si合金因具有高强度和高导电性能在引线框架和连接器等电气器件上被广泛应用[6–8],Cu–Cr–Nb合金因优异的力学性能和热导性而被广泛关注[2,9‒10]。冷却水套需要适中的热导率来避免局部冷却水过热气化,产生“气锤”[11]。为了满足冷却水套的制备和使用要求,本课题组针对铜合金做了较多研究[3,12–14]。研究表明,Cu–Ni–Nb合金具有较高熔点、适中热导率及较强力学性能,在热交换材料领域具有广泛的应用前景。张俊哲等[13]采用真空电弧熔炼法研究了Ni质量分数20%、30%、40%和Nb质量分数1%、3%、5%、10%条件下Cu–Ni–Nb合金的组织及性能,通过对比不同成分的Cu–Ni–Nb合金,得出Cu–30Ni–5Nb合金熔点较高,热导率适中,比较适宜冷却水套的制备。铜合金的制备方法[15]包括熔铸法、粉末冶金法和原位合成法等。张俊哲等[13]通过真空电弧熔炼法制备Cu–Ni–Nb合金,结果出现铜元素烧损及组织成分偏析等问题。粉末冶金法成形温度较低,可以避免铜元素的烧损,同时可以有效改善微观组织,实现成分均匀分布。
本文按一定比例将电解铜粉、镍粉和铌粉混合,采用真空热压法制备Cu–30Ni–5Nb合金,研究热压温度对合金组织、相对密度、熔点及热导率的影响,获得制备具有较高熔点、适中热导率及较高力学性能的铜合金的最优热压温度。
1. 实验材料及方法
实验材料为电解铜粉(纯度99.99%)、镍粉(纯度99.9%)和铌粉(纯度99.9%),粒径均为300目。按质量分数65%Cu、30%Ni和5%Nb将粉末混合,放入XQM-2A型行星球磨机中进行球磨。球磨参数为球料质量比6:1,球磨时间20 h,转速300 r·min−1。将球磨后的Cu–30Ni–5Nb粉末放入石墨模具中,在ZM-44-12Y型真空热压炉中进行烧结,烧结压力为25 MPa,热压温度分别为800、850、875、900和950 ℃,保温时间为2 h,保温结束后随炉冷却得到Cu–30Ni–5Nb合金。
在热压烧结Cu–30Ni–5Nb合金上切取金相试样,腐蚀剂为FeCl3(5 g)+ HCl(15 mL)+ H2O(100 mL)。采用排水法测定Cu–30Ni–5Nb合金实际密度,并计算相对密度。通过Nova Nano 450型扫描电镜(scanning electron microscope,SEM)观察Cu–30Ni–5Nb合金的微观组织。利用BrukerD8型X射线衍射仪(X-ray diffraction,XRD)确定Cu–30Ni–5Nb合金的物相组成,并通过Jade6.5软件进行数据分析,计算第二相质量分数,根据布拉格衍射条件计算合金的晶面间距,如式(1)所示。
$$ 2d\sin \theta = n\lambda $$ (1) 式中:d为晶面间距,θ为X射线与晶面的夹角,n为衍射级数,λ为X射线波长。
利用STA449F3型综合热分析仪获得合金的示差扫描量热(differential scanning calorimeter,DSC)曲线,其吸热峰曲线和放热峰曲线的公切线交点即为合金的熔点。通过LFA447/2-2型激光导热仪测量合金的比热容及热扩散系数,根据式(2)计算出合金的热导率。
$$ \lambda = \alpha \cdot \rho \cdot {C_{\text{P}}} $$ (2) 式中:λ为合金热导率,W·m−1·K−1;α为热扩散系数,mm2·s−1;ρ为合金密度,g·cm−3;Cp为合金比热容,J·g−1·K−1。
2. 结果与讨论
2.1 物相及组织
图1为不同热压温度制备Cu–30Ni–5Nb合金的X射线衍射图谱。由图可知,基体相为Cu0.81Ni0.19,第二相为NbNi3,没有检测到其他相存在。将各合金X射线衍射图谱归一化后,对比Cu0.81Ni0.19相衍射峰位置、晶面间距和第二相质量分数,结果如表1所示,随着热压温度的升高,Cu0.81Ni0.19相衍射峰位值变大且晶面间距减小,第二相质量分数升高,表明CuNi固溶体中的Ni原子向外扩散增多。热压温度为800 ℃时,第二相质量分数为5.2%;热压温度为950 ℃时,第二相质量分数增加到8.9 %。
表 1 不同热压温度下Cu0.81Ni0.19相衍射峰位置、晶面间距和第二相质量分数Table 1. Diffraction peak position of Cu0.81Ni0.19 phase, the crystal plane spacing, and the second phase mass fraction at different hot-pressing temperatures热压温度 /
℃Cu0.81Ni0.19相衍射峰
位置,2θ / (°)晶面间距
d / nm第二相质量
分数 / %800 43.731 0.20684 5.2 850 43.738 0.20680 5.7 875 43.748 0.20676 5.9 900 43.757 0.20671 6.3 950 43.769 0.20667 8.9 图2为不同热压温度制备Cu–30Ni–5Nb合金的扫描电子显微组织形貌。从图中可知,Cu–30Ni–5Nb合金整体组织较为致密,第二相形态大部分为层片状(图2(f)),是由球磨过程中球与粉末的碰撞导致[16]。第二相颗粒大部分在晶界处析出,少量在晶粒内析出,且随着温度的升高出现了偏聚现象。热压温度较低时,试样中存在较多的气孔且基本分布于晶界处,经875 ℃热压后试样中气孔基本消失(图2(c))。机械合金化形成的CuNiNb固溶体经热压后析出的Ni原子与Nb原子结合形成NbNi3相。同时,各试样存在压制压力导致的应变条痕(孪晶),有利于细小弥散的NbNi3相析出。
2.2 相对密度、熔点及热导率
表2为不同热压温度制备Cu–30Ni–5Nb合金的相对密度、熔点及热导率。热压温度为800 ℃时,合金组织中存在较多气孔(图2(a)),相对密度较低(93.59%);随着热压温度的升高,提供给粉末颗粒重排、塑性变形、原子扩散等晶界迁移的动力增加,促使烧结体内部气体排出,使合金致密化程度升高。当热压温度为900 ℃时,合金相对密度达到最大(99.13%),但当热压温度达到950 ℃时,其相对密度略微减小。这是由于热压温度升至950 ℃时,充足的烧结驱动力使晶界迁移冲破第二相和气孔“钉扎”作用的束缚,导致晶粒中包含少量第二相颗粒与气孔(见图2(e)),引起合金的相对密度降低。
表 2 不同热压温度制备Cu–30Ni–5Nb合金的性能Table 2. Properties of the Cu–30Ni–5Nb alloys prepared at different hot-pressing temperatures热压温度 / ℃ 相对密度 / % 热导率 / (W·m−1·K−1) 熔点 / ℃ 800 93.59 26.72 1190.93 850 96.57 28.16 1183.65 875 98.66 29.54 1180.86 900 99.13 30.65 1178.92 950 98.42 29.07 1182.42 图3为不同热压温度制备Cu–30Ni–5Nb合金的熔点及热导率变化曲线。可以看出,合金的熔点和热导率的变化呈相反趋势。随着热压温度的升高,原子扩散速度增加,基体相的成分发生微小偏移,导致合金的熔点逐渐下降,在900 ℃时最低为1178.92 ℃;随着热压温度的继续升高,合金的熔点随后上升,这是由于能量的增加使得第二相质量分数(见表1)从6.3%(900 ℃)突增至8.9%(950 ℃),而第二相熔点高于基体相,故出现熔点上升现象。随着热压温度的升高,Cu–Ni固溶体中的Ni原子趋于均匀扩散,表现为与Nb原子结合成的第二相(NbNi3)逐渐增加,使得合金的热导率逐渐上升,在900 ℃时有最大值30.65 W·m−1·K−1,热压温度超过900 ℃以后,合金的热导率稍有减小,这是由于过高的热压温度导致基体的网状结构变形,削弱了基体相与第二相的联系,造成合金导热性能下降。
结合表2和图3中不同热压温度下Cu–30Ni–5Nb合金的性能及变化趋势,发现在875 ℃热压后,合金的热导率和相对密度变化较小,性能趋于平稳。合金的相对密度、热导率与熔点均在900 ℃出现拐点,结合图2(e)中少量第二相颗粒包含在晶粒内,说明900 ℃热压后合金的性能发生异常。因此,在热压温度为875 ℃时Cu–30Ni–5Nb合金具有较好的综合性能。采用真空热压法制备的Cu–30Ni–5Nb合金熔点(1183.65 ℃)高于采用真空电弧熔炼法[13]制备的合金熔点(1172 ℃),但热导率变化不大。
2.3 拉伸性能及断口形貌
对热压温度为875 ℃制备的Cu–30Ni–5Nb合金进行了拉伸实验,得出其屈服强度(σ0.2)为355.74 MPa,伸长率为6.18%,较纯铜屈服强度(200 MPa)增加了77.9%。这是由于Cu、Ni元素可无限互溶,通过添加Ni元素,起到固溶强化作用。通过控制热压温度,抑制晶粒长大,达到细晶强化效果,使得铜合金在室温下具有较高的强度。图4为875 ℃热压制备Cu–30Ni–5Nb合金的拉伸断口形貌图。如图4(a)所示,合金少数区域出现“二次裂纹”,是由于拉伸过程中基体相(Cu0.81Ni0.19)与第二相(NbNi3)拉伸模量差异所致。如图4(b)所示,基体相中存在大量韧窝,且大韧窝周围分布有一些小韧窝,同时在韧窝内发现细小的第二相颗粒。如图4(c)所示,层片状的第二相主要发生晶间断裂,降低了铜合金的塑性。
3. 结论
(1)在800~950 ℃热压温度范围内,Cu–30Ni–5Nb合金的熔点先降低随后升高,900 ℃热压时,铜合金的熔点最低(1178.92 ℃);铜合金的热导率先增大随后减小,900 ℃热压时,铜合金的热导率最大(30.65 W·m−1·K−1)。
(2)热压温度为875 ℃时,Cu–30Ni–5Nb合金具有较好的综合性能,相对密度为98.66%,熔点为1180.86 ℃,热导率为29.54 W·m−1·K−1,且合金屈服强度达到355.74 MPa,符合冷却水套的性能要求。
-
表 1 水雾化铁粉化学成分(质量分数)
Table 1 Chemical composition of the water atomized ironpowders
% C Si S P Mn Fe ≤0.01 ≤0.04 ≤0.012 ≤0.012 ≤0.12 余量 -
[1] Šalak A, Selecká M, Bureš R. Manganese in ferrous powder metallurgy. Powder Metall Prog, 2001, 1(1): 41 http://www.researchgate.net/publication/267294771_Manganese_in_ferrous_powder_metallurgy/download
[2] Dudrová E, Kabátová M, Bidulský R, et al. Industrial processing, microstructures and mechanical properties of Fe-(2-4)Mn(-0.85Mo)-(0.3-0.7)C sintered steels. Powder Metall, 2004, 47(2): 180 DOI: 10.1179/003258904225015518
[3] Suciu C, Arghir G, Brandusan L, et al. Microstructure of the Fe-FeMn transition zone. Powder Metall Prog, 2011, 11(1-2): 153 http://smartsearch.nstl.gov.cn/paper_detail.html?id=768981387bc3474e745935de00f77262
[4] Šalak A, Selecká M. Effect of manganese content and manganese carrier on properties of sintered and sintered hardened hybrid Fe-3Cr-0.5Mo-xMn-0.24C steel. Powder Metall, 2008, 51(4): 327 DOI: 10.1179/174329008X284976
[5] 陈荟竹. Fe-Mn-(Mo)-C粉末冶金低合金钢制备及力学性能研究[学位论文]. 长沙: 中南大学, 2015 Chen H Z. Preparation and Mechanical Properties of Fe-Mn-(Mo)-C Powder Metallurgy Low Alloy Steel[Dissertation]. Changsha: Central South University, 2015
[6] Chen H Z, Luo P, Yang Y J, et al. Effect of Mn addition and its nitridation on microstructure and properties of sintered Fe-1Mn-0.5C low-alloy steel. J Mater Eng Perform, 2017, 26(9): 4481 DOI: 10.1007/s11665-017-2677-8
[7] Karlsson H, Nyborg L, Berg S. Surface chemical analysis of prealloyed water atomized steel powder. Powder Metall, 2005, 48(1): 51 DOI: 10.1179/0032589005X37675
[8] Hryha E, Gierl C, Nyborg L, et al. Surface composition of the steel powders pre-alloyed with manganese. Appl Surf Sci, 2010, 256(12): 3946 DOI: 10.1016/j.apsusc.2010.01.055
[9] Morioka Y. Recent advances in production of steel powders for high strength PM parts. Met Powder Rep, 1990, 45(3): 181 DOI: 10.1016/S0026-0657(10)80085-2
[10] 周国理, 洪恒泉, 何凤鸣, 等. 硅锰母合金对烧结钢性能和组织的影响. 粉末冶金技术, 1996, 14(4): 282 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ604.007.htm Zhou G L, Hong H Q, He F M, et al. Effect of silicon-manganese master alloy on properties and microstructure of sintered steel. Powder Metall Technol, 1996, 14(4): 282 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ604.007.htm
[11] Šalak A, Selecká M. Manganese in Powder Metallurgy Steels. Cambridge: Cambridge International Science Publishing, 2012
[12] Šalak A, Selecká M, Danninger H. Machinability of Powder Metallurgy Steels. Cambridge: Cambridge International Science Publishing, 2005
[13] 刘东, 向红亮, 胡育瑞. N含量对铸造CE8MN双相不锈钢组织和性能影响. 铸造技术, 2015(6): 1342 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201506004.htm Liu D, Xiang H L, Hu Y R. Effect of N content on microstructure and properties of CE8MN cast duplex stainless steel. Foundry Technol, 2015(6): 1342 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201506004.htm
[14] Sun G X, Zhang Y, Sun S C, et al. Plastic flow behavior and its relationship to tensile mechanical properties of high nitrogen nickel-free austenitic stainless steel. Mater Sci Eng A, 2016, 662(5): 432 http://smartsearch.nstl.gov.cn/paper_detail.html?id=8a4e3925e0987e572b055d2129a5c2e5
[15] James W B, Lindsiey B, Narasimhan K S. PM manganese steels for powder metallurgy parts. Powder Metall Prog, 2012, 12(1): 3 DOI: 10.1007/978-1-907343-75-9
-
期刊类型引用(5)
1. 龙安平,熊江英,张高翔,肖磊,冯干江,郭建政,刘如铁. FGH4113A合金的双性能热处理组织与力学性能研究. 稀有金属材料与工程. 2024(04): 1042-1050 . 百度学术
2. 武金江,赵广迪,姜昊源,孙乙轩,王博. 加热工艺对难变形高温合金U720Li中γ'相溶解及晶粒长大行为的影响. 稀有金属材料与工程. 2024(08): 2205-2216 . 百度学术
3. 刘晓燕,张习祎,陈秀全,孙靖石,张博言,杨艳慧. 热挤压态FGH96合金热变形行为及变形机制研究. 稀有金属. 2024(08): 1108-1119 . 百度学术
4. 洪震,张伟博,巩江涛,舒林森. 基于PSO–BP–GA混合算法的激光熔覆工艺多目标优化. 精密成形工程. 2023(07): 210-218 . 百度学术
5. 朱磊,王易成,张皓,陈阳,江荣,宋迎东. 具有不同梯度晶粒组织的粉末高温合金疲劳小裂纹扩展原位观察. 粉末冶金技术. 2023(05): 420-426 . 本站查看
其他类型引用(0)