高级检索

锻造温度对含钼粉末热锻合金显微组织及力学性能的影响

孙露, 张继峰, 邱天旭, 申小平

孙露, 张继峰, 邱天旭, 申小平. 锻造温度对含钼粉末热锻合金显微组织及力学性能的影响[J]. 粉末冶金技术, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
引用本文: 孙露, 张继峰, 邱天旭, 申小平. 锻造温度对含钼粉末热锻合金显微组织及力学性能的影响[J]. 粉末冶金技术, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
Citation: SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002

锻造温度对含钼粉末热锻合金显微组织及力学性能的影响

详细信息
    通讯作者:

    申小平, E-mail: xpshen171@163.com

  • 中图分类号: TG142.71

Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum

More Information
  • 摘要: 采用粉末热锻工艺制备Fe-1C-2Cu-xMo (x=0.50, 0.85, 1.46, 质量分数)合金, 分析锻造温度和Mo质量分数对烧结态及锻造态合金密度、显微组织、静态力学性能和动态摩擦性能的影响。结果表明: 锻造工艺能够有效提高材料密度, 锻后合金相对密度可达到98.5%, 锻态合金组织主要由贝氏体、马氏体和残余奥氏体组成。合金硬度随Mo质量分数的增加而提高, 随锻造温度的升高先降低后提高, 1050 ℃锻造Fe-1C-2Cu-1.46Mo合金硬度可达HRB116.38。Mo质量分数和锻造温度共同影响合金横向断裂强度, 1000 ℃锻造Fe-1C-2Cu-0.50Mo合金强度最高可达2608MPa, 合金断裂方式为韧脆混合型断裂。材料动态摩擦性能随Mo质量分数的增加显著提升, 当锻造温度为950 ℃且Mo质量分数为1.46%时, 材料的摩擦系数仅为0.088, 明显低于其他材料且波动较小。
    Abstract: Fe-1C-2Cu-xMo (x=0.50, 0.85, 1.46, mass fraction) alloys were fabricated by powder hot-forging in this paper. The effect of forging temperature and Mo content by mass on the density, microstructure, static mechanical properties, and dynamic friction properties of the alloys were investigated. In the results, the forging can effectively increase the density of alloys, and the relative density can reach 98.5% after forging. The microstructure is mainly composed of bainite, martensite, and retained austensite. The hardness of alloys increases with the increase of Mo content, and decreases first and then increases with the increase of forging temperature. The hardness of Fe-1C-2Cu-1.46Mo alloys forged at 1050 ℃ reaches the maximum value of HRB 116.38. The transverse rupture strength is jointly affected by the Mo content by mass and forging temperature, the maximum strength of Fe-1C-2Cu-0.50Mo alloys forged at 1000 ℃ can reaches 2608 MPa, and the fracture mode of alloys is the mixture of ductile and brittle fracture. As the increase of Mo content, the dynamic friction properties increase significantly. The friction coefficient of Fe-1C-2Cu-1.46Mo alloys forged at 950 ℃ is only 0.088, which is obviously lower than that of others with the smaller fluctuation.
  • 图  1   Mo预合金粉末形貌及元素分布:(a) 粉末形貌;(b) Fe元素分布;(c) Mo元素分布

    Figure  1.   Morphology and element distribution of the Mo prealloyed powders: (a) powder morphology; (b) Fe; (c) Mo

    图  2   1000 ℃锻造态M3合金显微形貌和能谱分析:(a) 显微形貌;(b) 位置1能谱分析;(c) 位置2能谱分析;(d) 位置3能谱分析

    Figure  2.   SEM image and EDS analysis of the M3 alloy samples forged at 1000 ℃: (a) SEM image; (b) EDS analysis at zone 1; (c) EDS analysis at zone 2; (d) EDS analysis at zone 3

    图  3   M3合金试样孔隙分布:(a) 烧结态;(b) 950 ℃锻造态

    Figure  3.   Pore distribution of the M3 alloys: (a) the sintered sample; (b) the forged sample at 950 ℃

    图  4   合金900 ℃锻态组织:(a) M1;(b) M2;(c) M3

    Figure  4.   Microstructures of the alloys forged at 900 ℃: (a) M1;(b) M2;(c) M3

    图  5   M3合金锻造态显微组织:(a) 900 ℃;(b) 950 ℃;(c) 1000 ℃;(d) 1050 ℃

    Figure  5.   Microstructure of the M3 forged at the different temperatures: (a) 900 ℃; (b) 950 ℃; (c) 1000 ℃; (d) 1050 ℃

    图  6   锻造温度对合金硬度的影响

    Figure  6.   Effect of the forging temperature on the hardness of alloys

    图  7   Mo质量分数对锻态合金横向断裂强度的影响

    Figure  7.   Effect of the Mo mass fraction on the TRS of alloys forged at the different temperatures

    图  8   950 ℃锻态合金的断口形貌:(a) M1;(b) M2;(c) M3

    Figure  8.   Fracture morphology of the alloys forged at 950 ℃: (a) M1;(b) M2;(c) M3

    图  9   锻造温度对M3合金摩擦系数的影响:(a) 900 ℃;(b) 950 ℃;(c) 1000 ℃;(d) 1050 ℃

    Figure  9.   Effect of the forging temperature on the friction coefficient of M3 alloys: (a) 900 ℃; (b) 950 ℃; (c) 1000 ℃; (d) 1050 ℃

    图  10   950 ℃锻造金的摩擦系数:(a) M1;(b) M2;(c) M3

    Figure  10.   Friction coefficient of the alloys forged at 950 ℃: (a) M1;(b) M2;(c) M3

    表  1   原料粉体纯度及粒度

    Table  1   Purity and particle sizes of the raw powders

    原料粉体 纯度(质量分数) /% 粒度/μm
    Mo预合金 ≥99.9% ≤150.0
    Cu ≥99.9% ≤75.0
    石墨 ≥99.9% ≤6.5
    下载: 导出CSV

    表  2   Fe-1C-2Cu-xMo合金化学成分(质量分数)

    Table  2   Chemical composition of the Fe-1C-2Cu-xMo alloys %

    试样编号 Mo Cu C
    M1 0.50 2.00 1.00
    M2 0.85 2.00 1.00
    M3 1.46 2.00 1.00
    下载: 导出CSV

    表  3   合金烧结态及锻态密度

    Table  3   Density of the sintered and forged alloys

    成分 烧结态密度/(g·cm‒3) 锻态密度/(g·cm‒3)
    900 ℃ 950 ℃ 1000 ℃ 1050 ℃
    M1 6.50 (82.3%) 7.74 (98.0%) 7.77 (98.4%) 7.76 (98.2%) 7.75 (98.1%)
    M2 6.50 (82.2%) 7.73 (97.7%) 7.76 (98.2%) 7.75 (98.0%) 7.73 (97.7%)
    M3 6.51 (82.2%) 7.73 (97.6%) 7.79 (98.5%) 7.76 (98.0%) 7.75 (97.9%)
    注:括号中为对应的相对密度
    下载: 导出CSV

    表  4   1000 ℃锻造态M3合金元素能谱成分分析

    Table  4   Composition of the M3 alloy samples forged at 1000 ℃ in EDS analysis

    位置 元素质量分数/%
    Cu Mo
    1 2.28 1.39
    2 2.05 1.35
    3 1.97 1.27
    下载: 导出CSV
  • [1]

    Wang C L, Jia P H, Li Z X. Mechanical Properties of Powder Forged Low-Alloy Steels. 1st Ed. Freiburg: Verlag Schmid Gmbh, 1986

    [2] 曾海卒, 李志友, 张雷, 等. Mn含量对粉末冶金铁碳铜低合金钢组织与力学性能的影响. 粉末冶金材料科学与工程, 2016, 21(4): 658 DOI: 10.3969/j.issn.1673-0224.2016.04.022

    Zeng H Z, Li Z Y, Zhang L, et al. Effect of Mn content on the microstructure and mechanical propoties of Fe-Cu-C sintered low-alloy steels. Mater Sci Eng Powder Metall, 2016, 21(4): 658 DOI: 10.3969/j.issn.1673-0224.2016.04.022

    [3] 胡磊, 肖志瑜, 付文超, 等. Mn含量对Fe-Cu-Mn-C系烧结合金组织和性能的影响. 粉末冶金材料科学与工程, 2013, 18(6): 821 DOI: 10.3969/j.issn.1673-0224.2013.06.008

    Hu L, Xiao Z Y, Fu W C, et al. Effect of manganese content on microstructure and properties of Fe-Cu-Mn-C sintering alloy. Mater Sci Eng Powder Metall, 2013, 18(6): 821 DOI: 10.3969/j.issn.1673-0224.2013.06.008

    [4] 郭彪, 葛昌纯, 张随财, 等. 粉末锻造技术与应用进展. 粉末冶金工业, 2011, 21(3): 45 DOI: 10.3969/j.issn.1006-6543.2011.03.010

    Guo B, Ge C C, Zhang S C, et al. Powder forging techonlogy and its application progress. Powder Metall Ind, 2011, 21(3): 45 DOI: 10.3969/j.issn.1006-6543.2011.03.010

    [5]

    Engstrom U, Miligan D, Klekovkin A, et al. Efficient low-alloyed steels for high performance structural applications//Proceedings of the 2005 International Conference on Powder Metallurgy and Particulate Materials. Princeton, 2005: 233

    [6] 周宇航, 胡平, 常恬, 等. 钼合金强韧化方式及机理研究进展. 功能材料, 2018, 49(1): 01026 https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201801006.htm

    Zhou Y H, Hu P, Chang T, et al. Research progress of strengthening and toughening modes and mechanisms of molybdenum alloys. J Funct Mater, 2018, 49(1): 01026 https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201801006.htm

    [7]

    Šalak A, Selecka M. Manganese in Powder Metallurgy Steels. 1st Ed. London: Cambridge International Science Publishing, 2012

    [8] 陈荟竹, 李松林, 王行, 等. 少量Mo添加对Fe-0.5Mn-0.5C烧结钢组织和力学性能的影响. 粉末冶金材料科学与工程, 2014, 19(5): 784 DOI: 10.3969/j.issn.1673-0224.2014.05.018

    Chen H Z, Li S L, Wang H, et al. Effect of small amount of Mo addition on microstructure and mechanical properties of Fe-0.5Mn-0.5C sintered steels. Mater Sci Eng Powder Metall, 2014, 19(5): 784 DOI: 10.3969/j.issn.1673-0224.2014.05.018

    [9]

    Bruce L. Development and benefits of prealloyed molybdenum PM steels. Int J Powder Metall, 2016, 52(3): 60 http://smartsearch.nstl.gov.cn/paper_detail.html?id=ffed005e5dc452dd598b0ee863d2de82

    [10]

    King P, Patel S, Shah S, et al. Lower molybdenum steels for high performance powder metallurgy applications//Advance in Powder Metallurgy and Particulate Materials 2006. Princeton, 2006: 81

    [11] 陈其玲. 粉末热锻零件性能影响因素研究[学位论文]. 合肥: 合肥工业大学, 2013

    Chen Q L. Research on the Related Factors of the Performance of Powder Hot Forging Parts[Dissertation]. Hefei: Hefei University of Technology, 2013

    [12]

    Rathore S S, Salve M M, Dabhade V V. Effect of molybdenum addition on the mechanical properties of sinter-forged Fe-Cu-C alloys. J Alloys Compd, 2015, 649: 988 DOI: 10.1016/j.jallcom.2015.07.156

    [13]

    Shanmugam S, Pandey K S, Thangal S U M, et al. Ring rupture strength and hardness of sintered hot-forged 1.5Mo alloyed carbon steels. J Mater Process Technol, 2009, 209(7): 3426 DOI: 10.1016/j.jmatprotec.2008.07.043

    [14] 杨硕, 肖志瑜, 关航健, 等. 烧结和锻造态Fe-2Cu-0.5C-0.11S材料的组织与力学性能研究. 粉末冶金技术, 2017, 35(1): 23 DOI: 10.3969/j.issn.1001-3784.2017.01.004

    Yang S, Xiao Z Y, Guan H J, et al. Microstructure and mechancial properties of sintered and forged Fe-2Cu-0.5C-0.11S materials. Powder Metall Technol, 2017, 35(1): 23 DOI: 10.3969/j.issn.1001-3784.2017.01.004

    [15]

    Sharif A A. Effect of Re and Al-alloying on mechanical properties and high-temperature oxidation of MoSi2. J Alloys Compd, 2012, 518: 22 DOI: 10.1016/j.jallcom.2011.12.082

    [16] 王笑天. 金属材料学. 1版. 北京: 机械工业出版社, 1987

    Wang X T. Metal Material Science. 1st Ed. Beijing: China Machine Press, 1987

    [17] 徐洲, 赵连城. 金属固态相变原理. 1版. 北京: 科学出版社, 2004

    Xu Z, Zhao L C. Metal Solid Phase Transition Principle. 1st Ed. Beijing: Science Press, 2004

    [18] 雷龙林. Fe-Cr-Mo粉末冶金钢组织与性能的研究[学位论文]. 长沙: 中南大学, 2014

    Lei L L. Research on the Microstructure and Properties of Fe-Cr-Mo Powder Metallurgy Steel[Dissertation]. Changsha: Center South University, 2014

  • 期刊类型引用(3)

    1. 万霖,张继峰,孙露,邱天旭,申小平. C与Cr含量对粉末锻造Fe–Cu–C–Cr合金组织和物理性能影响. 粉末冶金技术. 2023(06): 508-515 . 本站查看
    2. 林冰涛,何君,刘仲位,王承阳,李明,孙晓霞,周淑秋. 固体火箭发动机用钼镧喷管断口形貌及组织分析. 粉末冶金技术. 2022(01): 80-85 . 本站查看
    3. 刘波,刘军强. 数控机床齿轮Fe-Ni-Cu-C-Mo-V合金粉末锻造研究. 锻压技术. 2022(09): 23-29 . 百度学术

    其他类型引用(1)

图(10)  /  表(4)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  45
  • PDF下载量:  14
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-03-13
  • 刊出日期:  2020-06-26

目录

    /

    返回文章
    返回