高级检索

增材制造用金属粉末爆炸敏感性研究

Study on the explosion sensitivity of metal powders used in additive manufacturing

  • 摘要: 针对粉尘云最小着火能量(minimum ignition energy, MIE)、粉尘云最低着火温度(minimum ignition temperature of dust cloud, MITC)和粉尘层最低着火温度(minimum ignition temperature of dust layer, MITL)等参数, 开展了针对增材制造用金属粉末爆炸敏感性及影响因素的研究。结果表明, 镍合金粉末和不锈钢粉末爆炸敏感性较低, 而钛合金粉末的敏感程度略高于铝合金粉末, 八种粉末的爆炸敏感程度排序为: TA15>TC4>AlSi10Mg>316L>GH4169>GH3536>GH3625/304L。镍合金粉末和不锈钢粉末均不能被点燃; 钛合金、铝合金粉末的MIE和MITC均随粉尘浓度的升高呈先降低后升高的趋势, 而随喷尘压力的升高呈先降低后升高的趋势。

     

    Abstract: Based on the parameters of minimum ignition energy (MIE), minimum ignition temperature of dust cloud (MITC), and minimum ignition temperature of dust layer (MITL), the explosion sensitivity and influence factors of the typical metal powders used in additive manufacturing were investigated. The experimental results show that, the explosive sensitivity of nickel alloy powders and stainless steel powders is lower, while the explosive sensitivity of the titanium alloy powders is slightly higher than that of the aluminum alloy powders. The order of powder explosive sensitivity is as TA15>TC4>AlSi10Mg>316L>GH4169>GH3536>GH3625/304L. The results also show that, both nickel alloy powders and stainless steel powders could not be ignited. The MIE and MITC of titanium alloy powders and aluminum alloy powders decrease first and then increase with the increase of dust concentration, while decrease first and then increase with the increase of dust spraying pressure.

     

/

返回文章
返回