高级检索

超声空化对陶瓷刀具材料晶粒生长的影响

李东绪, 宋金鹏, 高姣姣, 吕明

李东绪, 宋金鹏, 高姣姣, 吕明. 超声空化对陶瓷刀具材料晶粒生长的影响[J]. 粉末冶金技术, 2021, 39(4): 332-338. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020005
引用本文: 李东绪, 宋金鹏, 高姣姣, 吕明. 超声空化对陶瓷刀具材料晶粒生长的影响[J]. 粉末冶金技术, 2021, 39(4): 332-338. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020005
LI Dong-xu, SONG Jin-peng, GAO Jiao-jiao, LÜ Ming. Effect of ultrasonic cavitation on grain growth of ceramic tool materials[J]. Powder Metallurgy Technology, 2021, 39(4): 332-338. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020005
Citation: LI Dong-xu, SONG Jin-peng, GAO Jiao-jiao, LÜ Ming. Effect of ultrasonic cavitation on grain growth of ceramic tool materials[J]. Powder Metallurgy Technology, 2021, 39(4): 332-338. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020005

超声空化对陶瓷刀具材料晶粒生长的影响

基金项目: 国家自然科学基金资助项目(51875388)
详细信息
    通讯作者:

    宋金鹏: E-mail:songjinpeng@tyut.edu.cn

  • 中图分类号: TF124.1

Effect of ultrasonic cavitation on grain growth of ceramic tool materials

More Information
  • 摘要: 为了研究超声无压烧结陶瓷刀具材料时超声空化对晶粒生长的影响,分析了气孔在熔融金属中发生超声空化的条件,建立了含有空化泡的晶粒模型,讨论了超声空化对晶粒的作用,并采用蒙特卡罗法模拟了未施加和施加超声下的晶粒生长过程,研究了超声空化对晶粒生长过程的影响。结果表明:当空化泡的半径介于1 μm~2 μm时,超声波的声压阈值为8.02×106 Pa,频率阈值为2.00×106 Hz;超声空化可增大晶格振动频率和振动能量,阻碍晶粒生长,起到细化晶粒和减小孔洞的作用。
    Abstract: To investigate the effect of the ultrasonic cavitation on the grain growth of the ceramic tool materials during the ultrasonic pressureless sintering, the cavitation effect of bubbles in the molten metals was studied, the grain model containing the cavitation bubbles was established, and the grain growth process without and with ultrasound was simulated by Monte Carlo method. The results show that, the threshold of sound pressure is 8.02×106 Pa and the threshold frequency is 2.00×106 Hz when the radius of the cavitation bubble is between 1 μm and 2 μm. Furthermore, the ultrasonic cavitation can increase the vibration frequency and vibration energy of the lattice, which hinders the growth of the crystal grains, refines the grains, and reduces the pore size.
  • 图  1   气泡初始半径与声压阈值的关系

    Figure  1.   Relationship between the initial radius of the bubbles and the threshold of sound pressure

    图  2   气泡初始半径与频率阈值的关系

    Figure  2.   Relationship between the initial radius of the bubbles and the threshold frequency

    图  3   空化泡及其周围晶粒的理想模型

    Figure  3.   Ideal model of the cavitation bubbles and surrounding grains

    图  4   蒙特卡罗法模拟的陶瓷刀具材料晶粒形貌:(a)未施加超声;(b)施加超声下

    Figure  4.   Grain morphology of the ceramic tool materials simulated by the Monte Carlo method: (a) without ultrasound; (b) with ultrasound

    图  5   陶瓷刀具材料晶粒平均半径与蒙特卡罗模拟时间步的关系

    Figure  5.   Relationship between the grain average radius of the ceramic tool materials and the Monte-Carlo step

  • [1] 房善想, 赵慧玲, 张勤俭. 超声加工技术的应用现状及其发展趋势. 机械工程学报, 2017, 53(19): 22 DOI: 10.3901/JME.2017.19.022

    Fang S X, Zhao H L, Zhang Q J. The application status and development trends of ultrasonic machining technology. J Mech Eng, 2017, 53(19): 22 DOI: 10.3901/JME.2017.19.022

    [2] 商兵, 蒋日鹏, 李晓谦, 等. 超声外场对不同温控状态下ZL205A铝合金凝固规律的影响. 工程科学学报, 2019, 41(8): 1007

    Shang B, Jiang R P, Li X Q, et al. Effect of ultrasonic outfield on solidification rules of ZL205A aluminum alloy under different temperature-control states. Chin J Eng, 2019, 41(8): 1007

    [3]

    Eskin D G, Wang F. Joint effect of ultrasonic vibrations and solid metal addition on the grain refinement of an aluminium alloy. Metals, 2019, 9(2): 161 DOI: 10.3390/met9020161

    [4] 刘曦阳. Al2O3/SiC陶瓷刀具材料微观组织演变的模拟[学位论文]. 天津: 河北工业大学, 2015.

    Liu X Y. Simulation on Microstructure Evolution of Al2O3/SiC Ceramic Cutting Tool Materials [Dissertation]. Tianjin: Hebei University of Technology, 2015.

    [5] 王晓勉, 黄龙霄, 秦湘阁. 粉末固相烧结的动力学蒙特卡洛模拟. 中国体视学与图像分析, 2017, 22(2): 151

    Wang X M, Huang L X, Qin X G. Kinetic Monte Carlo simulation of soild-state sintering of powder. Chin J Stereol Image Anal, 2017, 22(2): 151

    [6] 邵想, 郑勇, 王守文, 等. Mo2FeB2基金属陶瓷液相烧结过程中硬质相晶粒生长的蒙特卡罗模拟. 硬质合金, 2018, 35(3): 147

    Shao X, Zheng Y, Wang S W, et al. Monte Carlo simulation on grain growth of the ceramic phase in Mo2FeB2-based cermets during the liquid phase sintering. Cem Carbide, 2018, 35(3): 147

    [7]

    Ma L, Yu J C, Guo X, et al. Pressureless densification and properties of TiB2–B4C composite ceramics with Ni as additives. Micro Nano Lett, 2018, 13(7): 947 DOI: 10.1049/mnl.2017.0709

    [8] 张晨博. 肿瘤超声治疗中气泡空化运动学数值分析[学位论文]. 大连: 大连交通大学, 2016.

    Zhang C B. Numerical Analysis of Cavitation Bubbles Kinematics in Tumor Ultrasound Therapy [Dissertation]. Dalian: Dalian Jiaotong University, 2016.

    [9] 鲍瑞, 李澜波, 易健宏, 等. CNTs增强铜基复合粉末制备的研究进展. 粉末冶金技术, 2016, 34(6): 454 DOI: 10.3969/j.issn.1001-3784.2016.06.011

    Bao R, Li L B, Yi J H, et al. The fabrication of carbon nanotube reinforced copper matrix powder. Powder Metall Technol, 2016, 34(6): 454 DOI: 10.3969/j.issn.1001-3784.2016.06.011

    [10] 蔡晨亮, 屠娟, 郭霞生, 等. 包膜黏弹特性及声驱动参数对相互作用微泡动力学行为的影响. 声学学报, 2019, 44(4): 772

    Cai C L, Tu J, Guo X S, et al. The impacts of encapsulating shell properties and acoustic driving parameters on the dynamic behavior of interacting microbubbles. Acta Acust, 2019, 44(4): 772

    [11] 胡谦谦, 张立华. 超声空化对7050铝合金的细晶分析. 特种铸造及有色合金, 2012, 32(4): 387

    Hu Q Q, Zhang L H. Effects of ultrasonic cavitation behavior on grain refinement of 7050 aluminum alloy. Spec Cast Nonferrous Alloys, 2012, 32(4): 387

    [12]

    Li Z W, Xu Z W, Ma L, et al. Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part II: Cavitation erosion effect. Ultrason Sonochem, 2019, 50: 278 DOI: 10.1016/j.ultsonch.2018.09.027

    [13] 关振铎, 张中太, 焦金生. 无机材料物理性能. 2版. 北京: 清华大学出版社, 2011.

    Guan Z D, Zhang Z T, Jiao J S. Physical Properties of Inorganic Materials. 2nd Ed. Beijing: Tsinghua University Press, 2011.

    [14]

    Wang X, Atkinson A. Combining densification and coarsening in a Cellular Automata-Monte-Carlo simulation of sintering: Methodology and calibration. Comput Mater Sci, 2018, 143: 338 DOI: 10.1016/j.commatsci.2017.11.023

    [15] 颜士伟, 黄尚宇, 胡建华, 等. 数值仿真技术在粉末冶金零件制造中的应用及研究进展. 粉末冶金技术, 2017, 35(1): 57 DOI: 10.3969/j.issn.1001-3784.2017.01.010

    Yan S W, Huang S Y, Hu J H, et al. Development and application of numerical simulation in powder metallurgy manufacturing. Powder Metall Technol, 2017, 35(1): 57 DOI: 10.3969/j.issn.1001-3784.2017.01.010

    [16]

    Zhang D L, Weng G A, Gong S P, et al. Computer simulation of grain growth of intermediate and final-stage sintering and Ostwald ripening of BaTiO3-based PTCR ceramics. Mater Sci Eng B, 2003, 99(1-3): 428 DOI: 10.1016/S0921-5107(02)00449-X

图(5)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  145
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-14
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回