-
摘要:
福岛核事故发生后,为提高核燃料元件抵抗严重事故能力而开发的耐事故燃料成为核行业研究热点。本文介绍了以BeO、SiC掺杂为代表的热导增强型UO2芯块、高铀密度高热导燃料芯块和全陶瓷微封装燃料芯块,总结了耐事故燃料芯块的优势特性、热导率、制备方法和研究进展,分析和展望了耐事故燃料芯块的现有问题和应用前景,以期为耐事故燃料芯块的研究提供参考。
Abstract:After the Fukushima nuclear accident, the accident tolerant fuel (ATF) is developed to improve the ability of nuclear fuel components to resist the serious accidents and becomes the hot research topic in the nuclear industry. The enhanced thermal conductivity UO2 pellets represented by BeO and SiC doping, high uranium density and high thermal conductivity fuel pellets, and fully ceramic microencapsulated fuel pellets were reviewed in this paper. The advantage characteristics, thermal conductivity, preparation process, and research progress of the accident resistant fuel pellets were introduced. The problems and application prospects of the accident resistant fuel pellets were focused and prospected to provide the reference for the study of the accident tolerant fuel pellets.
-
-
-
[1] Carmack J. Accident tolerant fuel development program. Nucl Plant J, 2014, 32(1): 46
[2] Terrani K A. Accident tolerant fuel cladding development: Promise, status, and challenges. J Nucl Mater, 2018, 501(4): 13
[3] Zhou W Z, Liu R, Revankar S T. Fabrication methods and thermal hydraulics analysis of enhanced thermal conductivity UO2–BeO fuel in light water reactors. Ann Nucl Eng, 2015, 81(1): 240
[4] Revankar S T, Zhou W Z, Chandramouli D. Thermal performance of UO2–BeO fuel during a loss of coolant accident. Int J Nucl Energy Sci Eng, 2015, 5: 1 DOI: 10.14355/ijnese.2015.05.001
[5] McDeavitt S, Ragusa J, Revankar S T, et al. A high-conductivity oxide fuel concept. Nucl Eng Int, 2011, 56(682): 40
[6] Latta R, Revankar S T, Solomon A A. Modeling and measurement of thermal properties of ceramic composite fuel for light water reactors. Heat Transfer Eng, 2008, 29(4): 357 DOI: 10.1080/01457630701825390
[7] Solomon A A, Revankar S, Areva J K M. Enhanced thermal conductivity oxide fuels. U. S. Department of Energy Office of Scientific and Technical Information (2006-01-17) [2020-03-10]. https://www.osti.gov/servlets/purl/862369
[8] Li B Q, Yang Z L, Jia J P, et al. High temperature thermal physical performance of BeO/UO2 composites prepared by spark plasma sintering (SPS). Scr Mater, 2018, 142: 70 DOI: 10.1016/j.scriptamat.2017.08.031
[9] Yeo S, Mckenna E, Baney R, et al. Fabrication strategies and thermal conductivity assessment of high density UO2 Pellet incorporated with SiC. Mater Res Soc Symp Proc, 2012, 1444: 9
[10] Yeo S, Mckenna E, Baney R, et al. Enhanced thermal conductivity of uranium dioxide–silicon carbide composite fuel pellets prepared by spark plasma sintering (SPS). J Nucl Mater, 2013, 433: 66 DOI: 10.1016/j.jnucmat.2012.09.015
[11] Ge L H, Subhash G, Baney R H, et al. Densification of uranium dioxide fuel pellets prepared by spark plasma sintering (SPS). J Nucl Mater, 2013, 435(1-3): 1 DOI: 10.1016/j.jnucmat.2012.12.010
[12] Yeo S, Baney R, Subhash G, et al. The influence of SiC particle size and volume fraction on the thermal conductivity of spark plasma sintered UO2–SiC composites. J Nucl Mater, 2013, 442: 245 DOI: 10.1016/j.jnucmat.2013.09.003
[13] Li B Q, Yang Z L, Jia J P, et al. High temperature thermal physical performance of SiC/UO2 composites up to 1600 ℃. Ceram Int, 2018, 44: 10069 DOI: 10.1016/j.ceramint.2018.02.208
[14] Cappia F, Harp J M, McCoy K. Post-irradiation examinations of UO2 composites as part of the accident tolerant fuels campaign. J Nucl Mater, 2019, 517: 97 DOI: 10.1016/j.jnucmat.2019.01.050
[15] Middleburgh S C, Claisse A, Andersson D A, et al. Solution of hydrogen in accident tolerant fuel candidate material: U3Si2. J Nucl Mater, 2018, 501: 234 DOI: 10.1016/j.jnucmat.2018.01.018
[16] Harp J M, Lessing P A, Hoggan R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation. J Nucl Mater, 2015, 466: 728 DOI: 10.1016/j.jnucmat.2015.06.027
[17] White J T, Nelson A T, Dunwoody J T, et al. Thermophysical properties of U3Si2 to 1773 K. J Nucl Mater, 2015, 464: 275 DOI: 10.1016/j.jnucmat.2015.04.031
[18] Mcclellan K J. FY2015 ceramic fuels development annual highlights. U. S. Department of Energy Office of Scientific and Technical Information (2015-09-22) [2020-03-10]. https://www.osti.gov/servlets/purl/1215812.
[19] 张翔, 刘桂良, 刘云明, 等. U3Si2燃料芯块的制备与显微组织研究. 核动力工程, 2019, 40(1): 56 Zhang X, Liu G L, Liu Y M, et al. Study on fabrication and microstructural analysis of U3Si2 fuel pellets. Nucl Power Eng, 2019, 40(1): 56
[20] Cappia F, Harp J M. Postirradiation examinations of low burnup U3Si2 fuel for light water reactor applications. J Nucl Mater, 2019, 518: 62 DOI: 10.1016/j.jnucmat.2019.02.047
[21] White J T, Travis A W, Dunwoody J T, et al. Fabrication and thermophysical property characterization of UN/U3Si2 composite fuel forms. J Nucl Mater, 2017, 495: 463 DOI: 10.1016/j.jnucmat.2017.08.041
[22] Terrani K A, Kiggans J O, Katoh Y, et al. Fabrication and characterization of fully ceramic microencapsulated fuels. J Nucl Mater, 2012, 426(1-3): 268 DOI: 10.1016/j.jnucmat.2012.03.049
[23] Terrani K A, Trammell M P, Kiggans J O, et al. UN TRISO compaction in SiC for FCM fuel irradiations. U. S. Department of Energy Office of Scientific and Technical Information (2016-11-01) [2020-03-10]. https://www.osti.gov/servlets/purl/1335363
[24] Morris R N, Pappano P J. Estimation of maximum coated particle fuel compact packing fraction. J Nucl Mater, 2007, 361: 18 DOI: 10.1016/j.jnucmat.2006.10.017
[25] Lee H G, Kim D, Lee S J, et al. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites. Nucl Eng Des, 2017, 311: 9 DOI: 10.1016/j.nucengdes.2016.11.005