高级检索

SiC含量对SiCp/Al复合材料摩擦性能的影响

徐保海, 刘联军, 车明超, 李利

徐保海, 刘联军, 车明超, 李利. SiC含量对SiCp/Al复合材料摩擦性能的影响[J]. 粉末冶金技术, 2022, 40(1): 67-71. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030014
引用本文: 徐保海, 刘联军, 车明超, 李利. SiC含量对SiCp/Al复合材料摩擦性能的影响[J]. 粉末冶金技术, 2022, 40(1): 67-71. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030014
XU Bao-hai, LIU Lian-jun, CHE Ming-chao, LI Li. Effect of SiC content on friction properties of SiCp/Al composites[J]. Powder Metallurgy Technology, 2022, 40(1): 67-71. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030014
Citation: XU Bao-hai, LIU Lian-jun, CHE Ming-chao, LI Li. Effect of SiC content on friction properties of SiCp/Al composites[J]. Powder Metallurgy Technology, 2022, 40(1): 67-71. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030014

SiC含量对SiCp/Al复合材料摩擦性能的影响

详细信息
    通讯作者:

    刘联军: E-mail: sdwszyz@126.com

  • 中图分类号: TB331

Effect of SiC content on friction properties of SiCp/Al composites

More Information
  • 摘要: 采用粉末冶金技术制备了SiCp/Al复合材料,探讨了SiC颗粒质量分数对SiCp/Al复合材料密度、布氏硬度、微观形貌以及摩擦磨损性能的影响。结果表明,SiC颗粒表面形成了少量可提高界面结合性的Al4C3化合物。随着SiC质量分数增加,SiCp/Al复合材料的密度没有明显的变化,当SiC质量分数增加至25%时,密度明显下降。SiCp/Al复合材料的布氏硬度随着SiC质量分数的增加呈先增长后减小的变化趋势。当SiC质量分数为20%时,材料的硬度最优(HBW 114),平均摩擦系数达到最大值(0.3425),摩擦后试样表面形貌平整且犁沟较浅,SiC颗粒未出现明显剥落。
    Abstract: The SiCp/Al composites were prepared by the powder metallurgy technology, and the influences of SiC particle mass fraction on the density, Brinell hardness, microstructure, friction, and wear of the SiCp/Al composites were investigated. The results show that, a small amount of Al4C3 compounds can be formed on the surface of SiC particles, improving the bonding properties. With the increase of SiC mass fraction, the density of the SiCp/Al composites has no obvious change, when the SiC mass fraction increases to 25%, the density decreases obviously. The Brinell hardness of the SiCp/Al composites increases first and then decreases with the increase of SiC mass fraction. When SiC mass fraction is 20%, the optimal Brinell hardness is HBW 114 and the average friction coefficient can reach to the maximum as 0.3425, the surface morphology after friction is flat and shallow furrows, and the SiC particles has not obvious spalling.
  • 硬质合金是以难熔金属碳化物(WC、TiC、TaC等)为硬质相,以过渡金属元素(Co、Ni、Fe等)为粘结相,采用粉末冶金方法制备的复合材料[12]。硬质合金具有高强度、高硬度、高弹性模量、高耐磨损、高耐腐蚀、低热膨胀系数以及高化学稳定性等优点,被广泛地应用于拉丝模具、机械加工、耐磨耐腐蚀零件以及结构部件等领域,被誉为“工业的牙齿”[36]

    自1923年发展至今,硬质合金的材料体系、WC晶粒尺寸、微观结构类型不断得到丰富与发展[79]。均匀结构硬质合金是指内部微观结构均匀一致,具有相同成分、组织及性能的硬质合金[10]。根据WC晶粒大小,均匀结构硬质合金可分为纳米及超细晶硬质合金、超粗晶硬质合金和双晶硬质合金等[1118]。均匀结构硬质合金由陶瓷硬质相和金属粘结相组成,陶瓷硬质相的比例提高有助于硬度和耐磨性的改善,但会造成韧性的降低;反之,当金属粘结相的比例提高时,会出现相反的力学性能变化规律。均匀结构硬质合金存在无法同时提高耐磨性和断裂韧性的局限性。表面改性在硬质合金表层空间尺度上实现微观组织的变化,进而对表面力学性能进行优化调控,最终提高硬质合金工具的使用寿命,满足工业应用不断发展的现状。目前主要通过化学表面改性和物理表面改性获得具有实际工程应用价值的非均匀结构硬质合金。近年来,通过渗碳、脱碳、渗氮或脱氮处理等化学表面改性制备梯度硬质合金或通过物理气相沉积和化学气相沉积等物理表面改性制备涂层硬质合金已成为非均匀结构硬质合金的研究热点。基于物理气相沉积或化学气相沉积涂层方法的多层复合涂层硬质合金已实现大规模商业化应用。

    本文针对目前传统均匀结构硬质合金耐磨性和断裂韧性难以同时提升的问题提出改进措施,介绍了不同表面改性处理得到非均匀结构硬质合金的制备机理与研究现状,并对今后的研究方向提出了展望。

    随着硬质合金制备技术的发展,非均匀结构硬质合金的制备方法不断丰富,其中表面改性是制备非均匀结构硬质合金的主要方法。化学表面改性是通过原子扩散、液体流动、化学反应等方法实现硬质合金表面物相及微观组织的改变,进而完成合金表面力学性能的定向改善[1920]。目前通过化学表面改性制备的常见梯度硬质合金如表1所示。

    表  1  基于化学表面改性的常见梯度硬质合金
    Table  1.  Graded cemented carbides based on the chemical surface modification
    化学表面
    改性方法
    材料体系特点梯度结构特征
    渗碳处理缺碳表层贫Co,芯部含η相
    正常碳的质量分数表层贫Co,芯部不含η相
    脱碳处理碳的质量分数偏高表层富Co
    渗氮处理含Ti、Ta、Nb等元素表层富含立方相
    脱氮处理含N元素表层富Co,无立方相
    下载: 导出CSV 
    | 显示表格

    渗碳或脱碳处理实现梯度结构是基于碳的扩散及碳的质量分数对硬质合金微观组织的影响。如WC–Co合金中只出现WC与Co两相,正常碳的质量分数应分布在富碳上限和缺碳下限之间[21],其中富碳上限为(6.13+0.058×Co质量分数)%,缺碳下限为(6.13‒0.079×Co质量分数)%。当合金中的碳质量分数高于富碳上限时,就会出现游离C,也就是石墨相;当合金中的碳质量分数低于缺碳下限时,就会出现η相[2122]。渗氮或脱氮是基于氮的扩散和氮、钛及碳之间的化学反应。氮的扩散实现硬质合金表面物相和微观组织的变化,进而促进梯度结构的形成[19,23]

    表层贫Co且芯部含η相梯度结构的形成机理分析如下[2427]:通过预烧结制备含η相硬质合金,然后进行渗碳液相烧结,渗入合金表面的C原子与表面η相发生反应,生成WC与Co。随着C原子由表及里的迁移,C原子由外向内与η相反应,这种反应导致η相降低甚至消失,Co相增加。C原子浓度在液相Co中呈现出外高内低的梯度,C原子浓度梯度驱动分解出来的W原子往外表层迁移,并且会与液相Co中的C原子反应生成WC。由W原子往外迁移而引起的体积缺陷也会驱动外表层中的液相Co由表及里迁移,因而导致过渡层的Co含量(质量分数)偏高,进而引起过渡层WC晶粒粗化。

    表层贫Co且芯部含η相梯度结构示意图如图1所示[27],可分为贫Co表层、富Co过渡层和含η相芯部。该梯度硬质合金的Co含量(质量分数)与维氏硬度分布如图2所示[27]。由图可知,表层Co质量分数低于名义Co质量分数,因而表层硬度高;过渡层的Co质量分数高于名义Co质量分数,因而硬度低,韧性高;芯部含有η相,其Co质量分数是合金的名义Co质量分数。

    图  1  表层贫Co且芯部含η相梯度结构示意图[27]:(a)贫Co表层;(b)富Co过渡层;(c)含η相芯部
    Figure  1.  Schematic of the graded structure[27]: (a) the cobalt-depleted surface; (b) the cobalt-rich transition layer; (c) the core with η phase
    图  2  Co质量分数与维氏硬度从表面到中心的分布[27]
    Figure  2.  Distribution of Co mass fraction and vickers hardness from the surface to the center[27]

    图3所示为WC–10Co硬质合金的W–Co–C相图[28]。关于表层贫Co且芯部不含η相梯度结构形成机理分析如下[2829]:当温度在1275~1325 ℃区间时,WC、固相Co和液相Co三相共存,在此温度范围内,当C质量分数在5.34%~5.65%范围内增加时,固相Co含量(质量分数)明显减少,而液相Co含量显著增加。因此,当低C含量且不含η相硬质合金在此温度下进行渗碳处理时,C原子逐渐渗入合金的表层,较高的C含量使合金表层首先出现液相Co,进而液相Co从合金表层向合金内部渗入,当保温一定时间,再冷却降温后,所有Co都会以固相Co的形式存在,最终出现表层贫Co的梯度硬质合金。该梯度结构特征如图4所示[28],由贫Co的表层和无η相的芯部组成。

    图  3  WC–10Co硬质合金的W–Co–C相图[28]
    Figure  3.  W–Co–C phase diagram of the WC–10Co cemented carbide[28]
    图  4  表层贫Co且芯部不含η相梯度结构示意图[28]:(a)贫Co表层;(b)无η相芯部
    Figure  4.  Schematic of the graded structure[28]: (a) the cobalt-depleted surface; (b) the core without η phase

    富Co表层梯度结构形成机理分析[3032]如下:从图3可以看出,液相Co含量(质量分数)会随着温度和C含量(质量分数)的变化而改变。脱碳处理即在低碳势的气氛下进行烧结,在1300 ℃以下进行脱碳,硬质合金表层的C含量将会率先降低,表层的Co优先从液相到固相发生转变,当液相Co开始凝固时,表层中溶解在液相Co中的C和W溶解度会下降,进而表层中的C和W向合金的内部迁移,最终形成表层富Co层,类似于一层Co覆盖在硬质合金的表层。脱碳处理得到的富Co表层梯度硬质合金如图5所示[28]。通过脱碳处理制备表层覆盖Co层的梯度硬质合金,对原始合金的C含量(质量分数)要求偏高,否则将会造成合金内部缺C。

    图  5  脱碳处理得到的富Co表层梯度硬质合金[30]:(a)表面形貌;(b)断面形貌
    Figure  5.  Graded cemented carbides with the cobalt-rich surface obtained by decarburization[30]: (a) surface morphology; (b) section morphology

    表层富含立方相梯度结构形成机理如图6所示[19,3334]:渗氮促使烧结气氛中的N原子扩散到合金表面,N原子与合金表面的C、Ti原子反应生成Ti(C,N)。该反应促使合金内部区域的Ti原子从里往外迁移。合金次表层的Ti原子向外迁移留下空位,此空位需要其他原子予以填充。金属Co原子在硬质合金材料体系中的扩散系数高,尤其是液相烧结,部分Co相为液相,流动性最好,所以Co原子会定向迁移填充由Ti原子迁移所造成的原子空位。此时,合金的次表层Co含量增加,次表层Co的富集促进次表层WC晶粒通过溶解–析出机制长大粗化,所以次表层富Co且WC晶粒粗大。最终形成表层富立方相、次表层富Co且WC晶粒粗大的梯度结构硬质合金。

    图  6  表层富含立方相梯度结构形成机理示意图[19,3334]
    Figure  6.  Formation mechanism schematic diagram of the graded structure with the surface layer in cubic-rich phase[19,3334]

    表层富Co且无立方相梯度结构形成机理如图7所示[3536]:在无氮或贫氮的烧结气氛下,含氮硬质合金在液相烧结过程中合金表面的氮化物发生分解,即合金表面N原子向烧结气氛中扩散,进而造成合金表层的N原子含量降低。此时,合金内部N原子的浓度大于合金表面N原子的浓度,合金内部的N原子向合金表面扩散。由于N与Ti原子之间存在强烈的亲和力,当合金内部的N原子通过粘结相向合金表面扩散时,合金表面的Ti原子也会通过粘结相向内部扩散,同时液相Co会从合金内部流向表层去填补由TiN分解出现的空位,进而导致合金表层的Co含量增加。直至合金表层TiN几乎全部发生分解,进而形成表层富Co且无立方相梯度结构硬质合金。

    图  7  表层富Co无立方相梯度结构形成机理示意图[3536]
    Figure  7.  Formation mechanism schematic diagram of the gradient structure in the surface layer with cobalt-rich and without cubic phase[3536]

    目前,部分基于化学表面改性方法的结构功能一体化梯度硬质合金材料已实现商业化且制备机理已基本清晰。但在化学表面改性实现梯度结构过程中,关于化学扩散与热扩散原理还缺乏深入研究,需要深入分析原子的迁移驱动力、动力学方程,建立原子在化学势和温度梯度作用下的迁移模型。

    物理表面改性是通过涂覆的方法在硬质合金表面制备单层或者多层复合涂层,从而赋予硬质合金特定的表面性能[37]。目前,涂层硬质合金主要通过物理气相沉积和化学气相沉积方法在材料表面涂覆高耐磨的难熔金属或非金属化合物[38]

    国内外研究人员对物理气相沉积和化学气相沉积涂层方法进行了广泛且深入的研究,结果表明两种方法分别具有不同优势[3841]。对于物理气相沉积,沉积温度低,涂层的沉积温度约200~500 ℃,一般对基体影响不大;对于化学气相沉积,由于沉积温度较高(850~1050 ℃),基体通常参与了薄膜成膜初期的化学反应。物理气相沉积涂层表面光滑,内部产生压应力,有助于抗裂纹扩展。对于化学气相沉积,涂层反应源的制备相对比较容易,涂层与基体结合强度高,涂层附着力强、均匀性好,适合用来给复杂形貌工件镀层。化学气相沉积涂层工业化成本低于物理气相沉积涂层。

    由于单一涂层难以满足当前机加工对涂层硬质合金刀具的力学性能要求,涂层成分趋于多元化,涂层结构趋于复合化,涂层微观组织趋于纳米化[38,42]。从目前应用需求分析,机加工对涂层结构的功能性要求越来越高[42],复合功能涂层结构已取得广泛应用。

    瑞典、美国等国家的著名刀具公司都开发有多层结构的涂层硬质合金刀具。如瑞典Sandvik Coromant公司的GC2015牌号刀具具有TiCN–TiN/Al2O3–TiN的三层结构复合涂层,TiCN底层与基体的结合强度高,TiN/Al2O3中间层既耐磨又能抑制裂纹的扩展,TiN表层具有较好的化学稳定性且易于观察刀具的磨损[43]。美国Kennametal Hertel公司的KC9315型刀片上共有三层涂层,底层是Al2O3,中间层是TiCN,表面层是TiN。这种多层复合涂层的性能较单层的TiC、TiN涂层及TiC/TiN双层涂层具有明显性能优势。多层复合涂层的功能分析如图8所示[42]

    图  8  多层复合涂层示意图[42]
    Figure  8.  Schematic diagram of the multilayer composite coatings[42]

    物理表面改性方法解决了硬质合金刀具硬度与强度之间的矛盾,已经在数控车床刀具领域取得广泛应用。涂层的性能取决于材料的微观组织结构与化学成分,除了研究涂层材料、涂层制备技术、涂层工艺之外,还需要重点研究涂层材料与硬质合金材料之间化学成分和热膨胀系数的匹配关系。

    硬质合金的主要研究方向已经从均匀结构向非均匀结构转变。对于化学表面改性梯度硬质合金,在研究当前梯度硬质合金微观结构及形成机理的基础上,需要完善其热力学、动力学数据,从微观机制上完整解释梯度结构的形成过程,实现准确调控梯度结构形成的重要参数,为功能梯度硬质合金的制备提供更充分的基础理论指导。对于物理表面改性涂层硬质合金,当前研究主要是在均匀结构硬质合金基体上进行涂层结构复合化设计,对硬质合金基体的梯度结构设计在改善涂层与基体结合强度方面具有潜在技术优势,因此,需要对硬质合金基体的非均匀结构设计开展深入研究。

  • 图  1   SiCp/Al复合材料的X射线衍射图谱

    Figure  1.   XRD patterns of the SiCp/Al composites

    图  2   SiCp/Al复合材料的密度曲线

    Figure  2.   Density curve of the SiCp/Al composites

    图  3   SiCp/Al复合材料的硬度曲线

    Figure  3.   Hardness curve of the SiCp/Al composites

    图  4   添加不同质量分数SiC的SiCp/Al复合材料的扫描电子显微形貌:(a)10%;(b)15%;(c)20%;(d)25%

    Figure  4.   SEM images of the SiCp/Al composites with different mass fraction of SiC: (a) 10%; (b) 15%; (c) 20%; (d) 25%

    图  5   添加不同质量分数SiC的SiCp/Al复合材料的摩擦系数曲线

    Figure  5.   Friciton coefficient curves of the SiCp/Al composites with different mass fraction of SiC

    图  6   SiCp/Al复合材料的磨损量曲线

    Figure  6.   Wear rate curve of the SiCp/Al composites

    图  7   添加不同质量分数SiC的SiCp/Al复合材料的摩擦表面形貌:(a)10%;(b)15%;(c)20%;(d)25%

    Figure  7.   Wear surface morphology of SiCp/Al composites with different mass fraction of SiC: (a) 10%; (b) 15%; (c) 20%; (d) 25%

    表  1   SiCp/Al复合材料的配比组成(质量分数)

    Table  1   Composition of the SiCp/Al samples %

    试样AlCuSiMnSiCMg
    1#701081.5100.5
    2#651081.5150.5
    3#601081.5200.5
    4#551081.5250.5
    下载: 导出CSV
  • [1] 乔文明, 李颖. 铝基复合材料的制备及应用. 热加工工艺, 2013, 42(4): 126

    Qiao W M, Li Y. Preparation process and application of aluminum matrix composites. Hot Working Technol, 2013, 42(4): 126

    [2]

    Jung S W, Lee J H, Nam J B, et al. Analysis of strengthening mechanism in hybrid short fiber/particle reinforced metal matrix composites. Key Eng Mater, 2000, 183: 1297

    [3] 高红霞, 陈宝龙, 樊江磊, 等. SiC颗粒增强耐磨铝基复合材料组织及性能研究. 热加工工艺, 2018, 47(8): 93

    Gao H X, Chen B L, Fan J L, et al. Study on microstructure and properties of SiC particle-reinforced wear resistant aluminum matrix composites. Hot Working Technol, 2018, 47(8): 93

    [4] 崔岩. 碳化硅颗粒增强铝基复合材料的航空航天应用. 材料工程, 2003(6): 3 DOI: 10.3969/j.issn.1001-4381.2003.06.001

    Cui Y. Aerospace application of silicon carbide particulate reinforced aluminum matrix composites. J Mater Eng, 2003(6): 3 DOI: 10.3969/j.issn.1001-4381.2003.06.001

    [5] 平延磊, 贾成厂, 曲选辉, 等. SiCp/Al复合材料的研究方法现状. 粉末冶金技术, 2005, 23(4): 296 DOI: 10.3321/j.issn:1001-3784.2005.04.012

    Ping Y L, Jia C C, Qu X H, et al. Present state of research methods for the SiCp/Al composites. Powder Metall Technol, 2005, 23(4): 296 DOI: 10.3321/j.issn:1001-3784.2005.04.012

    [6] 褚克, 贾成厂, 尹法章, 等. 高体积分数SiCp/Al复合材料电子封装盒体的制备. 复合材料学报, 2006, 23(6): 108 DOI: 10.3321/j.issn:1000-3851.2006.06.018

    Chu K, Jia C C, Yin F Z, et al. Fabrication on electronic package box of SiCp/Al composites with high volume fraction of SiCp. Acta Mater Compos Sin, 2006, 23(6): 108 DOI: 10.3321/j.issn:1000-3851.2006.06.018

    [7] 郑晶, 贾志华, 马光. 碳化硅颗粒增强铝基复合材料的研究进展. 钛工业进展, 2006, 23(6): 13 DOI: 10.3969/j.issn.1009-9964.2006.06.005

    Zheng J, Jia Z H, Ma G. Progress in research of SiC particle reinforced Al-based composites. Titanium Ind Prog, 2006, 23(6): 13 DOI: 10.3969/j.issn.1009-9964.2006.06.005

    [8] 樊建中, 姚忠凯, 李义春, 等. 颗粒增强铝基复合材料的研究进展. 材料导报, 1997, 11(3): 48

    Fan J Z, Yao Z K, Li Y C, et al. The progress in the research of particulate-reinforced aluminum matrix composites. Mater Rev, 1997, 11(3): 48

    [9] 褚克, 贾成厂, 梁雪冰, 等. 注射成形与压力熔渗方法制备高体积分数SiCP/Al封装盒体及其导热性能分析. 粉末冶金技术, 2007, 25(5): 348

    Chu K, Jia C C, Liang X B, et al. Fabrication of SiCp/Al composites with high volume fraction SiCp by PIM and pressure infiltration. Powder Metall Technol, 2007, 25(5): 348

    [10] 郭明海, 刘俊友, 贾成厂, 等. 伪半固态触变成形制备SiCp/Al电子封装材料的组织与性能. 北京科技大学学报, 2014, 36(4): 489

    Guo M H, Liu J Y, Jia C C, et al. Microstructure and properties of SiCp/Al electronic packaging materials fabricated by pseudo-semi-solid thixoforming. J Univ Sci Technol Beijing, 2014, 36(4): 489

    [11] 冯世全, 李俊玉, 苏磊, 等. 高压下超硬材料硬度特性的理论研究//第十八届中国高压科学学术会议文集. 成都, 2016: 282

    Feng S Q, Li J Y, Su L, et al. Theoretical study on hardness characteristics of super hard materials under high pressure // Proceedings of the 18th Chinese High Pressure Science Conference. Chengdu, 2016: 282

    [12] 陈聪聪, 陈刚, 严红革, 等. 颗粒增强铝基梯度复合材料的摩擦磨损性能. 有色金属学报, 2011, 21(6): 1258

    Chen C C, Chen G, Yan H G, et al. Friction and wear properties of particle reinforced graded aluminum matrix composites. Chin J Nonferrous Met, 2011, 21(6): 1258

  • 期刊类型引用(2)

    1. 唐彦渊,羊求民,徐国钻,王红云,钟志强. 微量Y_2O_3对WC-6Co非均匀结构硬质合金微观结构及性能的影响. 粉末冶金技术. 2024(02): 184-191 . 本站查看
    2. 周晓刚,纪飞飞. 激光喷丸作用下TC4双相钛合金HCP结构位错组态及性能研究. 应用激光. 2022(10): 99-105 . 百度学术

    其他类型引用(0)

图(7)  /  表(1)
计量
  • 文章访问数:  446
  • HTML全文浏览量:  232
  • PDF下载量:  139
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-03-28
  • 录用日期:  2020-03-13
  • 网络出版日期:  2021-12-16
  • 刊出日期:  2022-02-27

目录

/

返回文章
返回