高级检索

机械涂覆法制备氧化锆球Ni涂层

Preparation of Ni coatings on zirconia balls by mechanical coating technology

  • 摘要: 为了研究转速和时间对机械涂覆法制备Ni涂层的影响,以金属Ni粉为涂覆原料、氧化锆(ZrO2)陶瓷球为涂覆基底制备Ni涂层。通过涂覆后陶瓷球的增重量来表征涂层的厚度,采用扫描电子显微镜和X射线衍射分析表征涂层的结构和成份。结果表明,随着转速提高,球磨初期涂层的厚度逐渐增加,持续球磨,涂层厚度反而开始降低。转速240 r∙min‒1、球磨15 h的涂覆效果最佳,涂层平均厚度约为20 μm。Ni涂层厚度经历了增厚和减薄两个阶段,转速会影响二者出现的进度,适当提高转速利于涂层加厚,提高工艺效率,但过高的转速不利涂层形成。

     

    Abstract: To investigate the influence of rotation speed and milling time on the formation of nickel (Ni) coatings prepared by mechanical coating technique (MCT), the Ni metal powders and the zirconia (ZrO2) ceramic balls were used as the coating materials and the substrates to fabricate the Ni coatings. The thickness of the coatings was characterized by the weight increase of the ZrO2 balls after the coating operation, and the microstructure and composition of the coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). In the results, with the increase of rotational speed, the coatings thickness increases at the initial stage of ball milling and decreases at the later stage. The coatings thickness reaches the maximum (20 μm) when the rotation speed is 240 r∙min‒1 for 15 h. The formation of Ni coatings consists of two stages as thickening and thinning, which is affected by the rotation speed. The higher rotation speed is favor of the coatings formation and improves the processing efficiency, while the excessively speed will accelerate the coatings to peel off from the substrate, which is unfavorable to the formation of the coatings.

     

/

返回文章
返回