高级检索

处理工艺对Fe–Al合金粉末成形性及生坯压溃强度的影响

邓颖, 吴引江, 南海娟, 梁永仁, 孟强

邓颖, 吴引江, 南海娟, 梁永仁, 孟强. 处理工艺对Fe–Al合金粉末成形性及生坯压溃强度的影响[J]. 粉末冶金技术, 2022, 40(3): 226-231. DOI: 10.19591/j.cnki.cn11-1974/tf.2020040010
引用本文: 邓颖, 吴引江, 南海娟, 梁永仁, 孟强. 处理工艺对Fe–Al合金粉末成形性及生坯压溃强度的影响[J]. 粉末冶金技术, 2022, 40(3): 226-231. DOI: 10.19591/j.cnki.cn11-1974/tf.2020040010
DENG Ying, WU Yin-jiang, NAN Hai-juan, LIANG Yong-ren, MENG Qiang. Effect of treatment process on the formability of Fe–Al alloy powders and the crushing strength of green compacts[J]. Powder Metallurgy Technology, 2022, 40(3): 226-231. DOI: 10.19591/j.cnki.cn11-1974/tf.2020040010
Citation: DENG Ying, WU Yin-jiang, NAN Hai-juan, LIANG Yong-ren, MENG Qiang. Effect of treatment process on the formability of Fe–Al alloy powders and the crushing strength of green compacts[J]. Powder Metallurgy Technology, 2022, 40(3): 226-231. DOI: 10.19591/j.cnki.cn11-1974/tf.2020040010

处理工艺对Fe–Al合金粉末成形性及生坯压溃强度的影响

详细信息
    通讯作者:

    邓颖: E-mail: 121553012@qq.com

  • 中图分类号: TF124

Effect of treatment process on the formability of Fe–Al alloy powders and the crushing strength of green compacts

More Information
  • 摘要: 为了提高Fe–Al合金粉末的压制成形性和生坯压溃强度,分析了氢气还原和真空退火工艺对Fe–Al合金粉末形貌和性能的影响,研究了原始粉末和经过处理后粉末所制管坯的成形率。结果发现,经氢气还原和真空退火处理后,粉末形貌变化不大,粉末性能提高,生坯压溃强度增强,成形性得到改善;尤其是经真空退火粉末的性能得到极大提高,氧的质量分数由0.5%低到0.2%,松装密度由1.82 g·cm−3降低到1.64 g·cm−3,显微硬度由HV 260降低到HV 158,压缩比由63%降低到56%,生坯压溃强度由2.0 MPa提高到2.7 MPa,粉末成形性得到极大改善。在批量化压制长管坯时,对原始粉末预先进行真空退火处理,长管生坯数量成品率由50%提高至100%,产品成本降低。
    Abstract: To improve the formability of Fe–Al alloy powders and the crushing strength of green compacts, the effects of hydrogen reduction and vacuum annealing on the morphology and properties of the Fe–Al alloy powders were analyzed, and the forming rate of the tube billets made from the original powders and the treated powders were studied. The results show that, after the hydrogen reduction and vacuum anneal treatment, the morphology of the original Fe–Al alloy powders has little change, the powder properties are enhanced, and the crushing strength and formability of the green compacts are improved. Especially after the vacuum anneal treatment, the powder properties are significantly enhanced, oxygen mass fraction decrease from 0.5% to 0.2%, apparent density decrease from 1.82 g·cm−3 to 1.64 g·cm−3, microhardness decrease from HV 260 to HV 158, compression ratio decrease from 63% to 56%, crushing strength of the green compact increase from 2.0 MPa to 2.7 MPa, the formability is greatly improved. In the quantity production of long tube billets, the vacuum annealing pretreatment of the original Fe–Al alloy powders can effectively increase the qualified rate of the long tube billets from 50% to 100% and reduce the product cost.
  • 稀有金属钼(Mo)是重要的高熔点金属,其熔点为2610 ℃,仅次于碳、钨、铼、钽和锇。金属Mo呈银白色,外形近似钢铁,具有高的硬度和弹性模量,低的蒸气压和蒸发速度,低的线膨胀系数,高的抗腐蚀能力等一系列优异特性,在现代国防、原子能工业、电真空、电光源等工程应用领域占有重要地位,在一些特殊高温应用领域甚至具有不可取代的作用[14]

    研究表明,在金属Mo基体中引入稀土氧化物粒子(可称作“稀土氧化物–Mo基材料”)可进一步提高材料的性能,拓展材料的应用。例如,通过引入氧化镧(La2O3)、氧化钇(Y2O3)等粒子对材料弥散强化,不仅可以大大提高金属Mo的室温强度和硬度,而且可以提高材料的再结晶温度,增强高温力学性能,显著延长作为高温发热体材料的使用寿命[58]。此外,在金属Mo基体中引入氧化钪(Sc2O3)、Y2O3等稀土氧化物粒子还可以提高材料的电子发射能力,用作优秀的阴极材料[9]

    作为改善金属Mo性能的稀土氧化物粒子,其尺寸大小及在Mo基体中的分布直接影响所制材料的性能。通常认为,粒子越细小,在Mo基体中分布越均匀,越有利于材料性能的提高[412],因此,设法获得粒度细小的稀土氧化物粒子、并使其均匀分布在基体中,是制备高性能稀土氧化物–Mo基材料的基础。由于熔点较高,目前难熔金属主要采用粉末冶金方法制备,而在粉末冶金工艺中,原料粉末是决定材料性能和制造成本的关键一环,要获得高性能的稀土氧化物–Mo基材料,需要首先制备出高纯度、细粒度、稀土氧化物粒子细小且掺杂分布均匀的Mo基粉末原料。与传统制备稀土氧化物–Mo基粉末的机械合金化法相比,溶液燃烧法具有掺杂少、合成效率高、能耗低等优点。特别是溶液燃烧法的合成原料均为水溶性物质,目标金属在水溶液中以离子形态存在,能够很容易实现各组分在原子或分子水平上的均匀分散和混合,这为最终得到Mo基材料中稀土氧化物弥散相的粒径细化和均匀分布提供了有利条件。

    为了增加溶液燃烧合成法的应用范围,同时为La2O3掺杂Mo合金的制备提供新思路,本文以七钼氨酸((NH4)6Mo7O24·4H2O)作为金属源,甘氨酸(C2H5O2N)为燃料,硝酸铵(NH4NO3)为氧化剂,采用溶液燃烧法合成不同质量分数La2O3掺杂的Mo前驱体粉末,并对前驱体粉末进行还原、烧结,研究La2O3掺杂量(质量分数)对粉体性能及对烧结后Mo合金各项性能的影响。

    以高可溶性的七钼氨酸((NH4)6Mo7O24·4H2O)为金属源,硝酸铵(NH4NO3)(≥99.0%)为氧化剂,甘氨酸(C2H5O2N)为燃料及添加剂,添加不同质量分数La(NO3)3·6H2O(以La2O3含量占最终合金粉末质量的比例为计算标准,分别为0、0.3%、0.7%、1.0%),通过溶液燃烧反应合成前驱体。在700 ℃下氢气氛围中还原,制备出La2O3掺杂Mo粉。对制备的粉末进行放电等离子体烧结(spark plasma sintering,SPS),烧结温度1600 ℃。

    采用X射线衍射仪(X-ray diffraction,XRD;PANalytical X-Pert PRO MPD)对未添加La2O3的氧化钼前驱体及Mo–La2O3前驱体的物相组成进行表征。采用场发射扫描电子显微镜(field emission scanning electron microscope,FESEM;Hitachi SU8020)和透射电子显微镜(transmission electron microscope,TEM)对产物的显微组织进行观察。采用能谱仪(energy disperse spectroscope,EDS)对试样中Mo和La的元素分布进行测定。

    图1为不同La2O3掺杂量的前驱体粉末微观形貌,可以清楚地发现,当不掺杂La2O3时,获得的前躯体粉末为片状结构,厚度为200 nm,片的尺寸约为0.5~2.0 μm。随着La2O3掺杂量的增加,其形貌开始变为细长颗粒状,且颗粒尺寸逐渐变小。当La2O3掺杂含量达到1.0%(质量分数)时,粉末晶粒尺寸以小于200 nm为主,且出现严重团聚现象。

    图  1  La2O3掺杂量对前驱体粉末显微形貌的影响:(a)0;(b)0.3%;(c)0.7%;(d)1.0%
    Figure  1.  Effect of La2O3 doping content (mass fraction) on the microstructure of the precursor powders: (a) 0; (b) 0.3%; (c) 0.7%; (d) 1.0%

    对不同La2O3掺杂量的前驱体粉末在700 ℃下进行还原,图2为还原产物扫描电子显微形貌。由图可以看出,制备出的La2O3掺杂Mo粉尺寸在纳米级别,随着La2O3添加量的增加,Mo粉的晶粒尺寸逐渐减小,其中掺杂质量分数为0、0.3%、0.7%和1.0%La2O3的Mo粉晶粒尺寸分别为220、180、150以及100 nm,这是由于添加La2O3抑制了Mo晶粒长大。另外,由于纳米粉末尤其是难熔金属的纳米粉末的表面积非常大,为了降低体系能量,还原后的粉末颗粒自发的聚集在一起,从而出现了不均匀的团聚现象。

    图  2  掺杂不同质量分数La2O3的Mo粉700 ℃还原产物显微形貌:(a)0;(b)0.3%;(c)0.7%;(d)1.0%
    Figure  2.  SEM images of the reduction products of the Mo powders doped by La2O3 in different mass fraction: (a) 0; (b) 0.3%; (c) 0.7%; (d) 1.0%

    图3为掺杂不同质量分数La2O3的Mo粉在700 ℃还原产物的X射线衍射图谱,由图可知,氧化钼前驱体均被还原成了Mo粉,这说明通过溶液燃烧法可以获得高纯度的La2O3掺杂Mo粉。此外,虽然在Mo粉中掺杂了不同含量的La2O3第二相粒子,但是在图中并未发现La的峰,可能是加入的La2O3所占比例非常小,在X射线衍射检测中未能发现。为了验证La2O3粒子的掺杂,实验对还原后的粉末进行了能谱分析,结果如图4所示,在掺杂质量分数为1.0%La2O3的Mo粉中发现了La特征峰,证明了La元素的存在。

    图  3  掺杂不同质量分数La2O3的Mo粉700 ℃还原产物X射线衍射图谱
    Figure  3.  XRD patterns of the Mo powders doped by La2O3 in different mass fraction after reduction at 700 ℃
    图  4  掺杂质量分数1.0%La2O3的Mo粉在700 ℃还原产物的扫描电子显微形貌(a)和对应的能谱分析(b)
    Figure  4.  SEM image (a) and the corresponding EDS analysis (b) of the Mo powders doped by 1.0%La2O3 after reduction at 700 ℃

    对还原后的粉末做进一步分析,通过透射电子显微镜对掺杂质量分数0.7%La2O3的Mo粉进行表征,结果见图5。从图中可以清楚地观察到,还原后的粉末粒径大约为150~200 nm,而且分散性较好。这主要是因为溶液燃烧法在反应过程中产生的前驱体晶粒细小,团聚体中存在大量的孔隙(如图1所示),因此在较低温度还原后,合金粉末的晶粒能够保持在纳米尺寸且分散性较好[13]

    图  5  Mo–0.7La2O3前驱体粉末透射电子显微镜照片:(a)低倍;(b)高倍
    Figure  5.  TEM images of the Mo–0.7La2O3 precursor powders: (a) low magnification; (b) high magnification

    图6为经1600 ℃烧结后La2O3掺杂Mo合金的断口形貌。和纯Mo相比,La2O3掺杂Mo合金材料的晶粒更为细小,并且随La2O3质量分数的提高,细化作用逐渐明显。可以看出,在La2O3质量分数为0.7%时,Mo晶粒尺寸为500 nm左右,继续增加La2O3质量分数至1.0%,其晶粒尺寸降至300 nm。随着La2O3掺杂量的增加,Mo–La2O3烧结体中空隙数量增加,La2O3质量分数为1.0%时,其断口形貌中孔隙数量最多。

    图  6  经1600 ℃烧结后不同质量分数La2O3掺杂Mo合金的断口形貌:(a)0;(b)0.3%;(c)0.7%;(d)1.0%
    Figure  6.  Fracture morphology of the Mo alloys doped by La2O3 in different mass fraction sintered at 1600 ℃: (a) 0; (b) 0.3%; (c) 0.7%; (d) 1.0%

    图7所示为不同La2O3掺杂量对Mo–La2O3合金相对密度的影响。可以明显看出,随着La2O3质量分数的提高,Mo合金的相对密度逐渐减小。这一方面是因为La2O3的实际密度低于纯Mo,随着掺杂量的提高,其相对密度必然会下降;另一方面,La2O3的加入会阻碍晶粒与烧结颈长大,同时阻碍晶界的迁移,使得材料的致密化行为变得困难,降低其相对密度[14]。这也与图6(d)中大量空隙相对应。

    图  7  1600 ℃烧结Mo–La2O3合金相对密度随La2O3质量分数变化
    Figure  7.  Relative density of the Mo–La2O3 alloys doped by La2O3 in different mass fraction sintered at 1600 ℃

    图8所示为Mo–La2O3合金材料的显微硬度随着La2O3掺杂量的变化。从图中可以看出,合金材料的显微硬度呈现先增加后减小的趋势,在La2O3质量分数为0.7%时,显微硬度达到最高,为HV0.2546。这是由于La2O3的加入会阻碍晶粒生长,细化晶粒,提高材料的力学性能[15]。同时,第二相粒子La2O3可以起到钉扎作用,阻碍位错的迁移,使得材料硬度提高。但是,当La2O3掺杂量过多时,样品密度降低,孔隙数量增加,从而引起硬度降低[1516]。因此当La2O3掺杂量超过0.7%时,硬度值又出现下降的趋势。

    图  8  1600 ℃烧结Mo–La2O3合金显微硬度随La2O3质量分数变化
    Figure  8.  Microhardness of the Mo–La2O3 alloys doped by La2O3 in different mass fraction sintered at 1600 ℃

    (1)将溶液燃烧法应用于纳米稀土氧化物掺杂Mo基材料的制备,成功制备出La2O3掺杂Mo合金粉,并经烧结获得合金样品,所制备合金样品具有优异的力学性能。

    (2)随着La2O3掺杂量(质量分数)的增加,溶液燃烧合成制备的前驱体粉末逐渐由片状大颗粒变成细小的不规则颗粒。在掺杂量为1.0%时,前驱体粉末晶粒尺寸在200 nm左右。经还原后得到的Mo–La2O3粉末晶粒尺寸随着La2O3掺杂量的增加而减小,在掺杂量为1.0%时,晶粒尺寸为100 nm左右。

    (3)所制得的La2O3掺杂Mo粉经1600 ℃烧结后产物相对密度在均在95%以上,随着La2O3掺杂量的增加(La2O3质量分数在0~1.0%范围内),相对密度逐渐降低,而显微硬度呈现先上升后下降的趋势。在La2O3掺杂量为0.7%时,Mo–La2O3合金显微硬度呈现出最大值,此时晶粒尺寸为500 nm左右,显微硬度达到HV0.2564。

  • 图  1   Fe–Al滤管装配图

    Figure  1.   Schematic diagram of Fe–Al filter

    图  2   长管生坯结构示意图

    Figure  2.   Schematic diagram of the long green compact

    图  4   不同工艺处理后Fe–Al合金粉末氧的质量分数(a)与松装密度(b)

    Figure  4.   Oxygen mass fraction (a) and the apparent density (b) of the Fe–Al alloy powders by the different treatment processes

    图  5   不同工艺处理后Fe–Al合金粉末显微硬度(a)与压缩比(b)

    Figure  5.   Microhardness (a) and the compression ratio (b) of the Fe–Al alloy powders by the different treatment processes

    图  6   不同工艺处理后Fe–Al合金粉末管坯孔隙度(a)与压溃强度(b)

    Figure  6.   Porosity (a) and the crushing strength (b) of the green compacts by the different treatment processes

    图  7   管体裂纹

    Figure  7.   Cracks of the green compacts

    图  8   法兰棱角掉粉

    Figure  8.   Powder desquamate from the flanges edge

    图  9   法兰断裂

    Figure  9.   Fractures of the flanges

    图  10   管底断裂

    Figure  10.   Fractures from the bottom

    图  11   长管坯实物图

    Figure  11.   Product of the long green compacts

    表  1   烧结Fe–Al合金多孔材料性能

    Table  1   Properties of the sintered Fe–Al alloy porous materials

    试样
    编号
    压溃强度 / MPa透气度 / (m3·m−2·h−1·kPa−1)最大孔径 / μm平均孔径 / μm
    1#521642015
    2#571581813
    3#621501510
    陶瓷
    滤管
    291351711
    下载: 导出CSV

    表  2   粉末长样品管坯数量成品率

    Table  2   Quantity qualified rate of the long green compacts

    试样编号生产数量 / 支合格数量 / 支成品率 / %成形性
    1#-C10550管坯成形较差,管身微裂纹,法兰/管底断裂
    2#-C10880管坯成形良好,管身无裂纹,法兰/管底棱角掉粉
    3#-C1010100管坯成形极好,管身无裂纹,法兰/管底棱角无掉粉
    下载: 导出CSV
  • [1] 崔春娟, 问亚岗, 杨猛, 等. Fe–Al金属间化合物的研究进展. 材料保护, 2017, 50(9): 82

    Cui C J, Wen Y G, Yang M, et al. Research progress of Fe–Al intermetallic compound. Mater Protect, 2017, 50(9): 82

    [2]

    Hammel E C, Ighodaro O L R, Okoli O I. Processing and properties of advanced porous ceramics: An application based review. Ceram Int, 2014, 40(10): 15351 DOI: 10.1016/j.ceramint.2014.06.095

    [3]

    Banhart J. Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci, 2001, 46(6): 559 DOI: 10.1016/S0079-6425(00)00002-5

    [4]

    Jiang Y, He Y H, Liu C T. Review of porous intermetallic compounds by reactive synthesis of elemental powders. Intermetallics, 2018, 93: 217 DOI: 10.1016/j.intermet.2017.06.003

    [5] 汪强兵, 汤慧平, 奚正平, 等. 煤气化技术用金属多孔材料研究进展. 稀有金属材料与工程, 2006, 35(增刊2): 448

    Wang Q B, Tang H P, Xi Z P, et al. The studies progress of the metal porous material using in the gasification technology. Rare Met Mater Eng, 2006, 35(Suppl 2): 448

    [6]

    Gao H Y, He Y H, Zou J, et al. Tortuosity factor for porous FeAl intermetallics fabricated by reactive synthesis. Trans Nonferrous Met Soc China, 2012, 22(9): 2179 DOI: 10.1016/S1003-6326(11)61446-5

    [7]

    Amaya M, Espinosa-Medina M A, Porcayo-Calderon J, et al. High temperature corrosion performance of FeAl intermetallic alloys in molten salts. Mater Sci Eng A, 2003, 349: 12 DOI: 10.1016/S0921-5093(01)01940-2

    [8] 王凡, 刘冠颖, 杨军军, 等. 金属过滤材料在高温除尘中的应用与发展. 粉末冶金技术, 2018, 36(3): 230

    Wang F, Liu G Y, Yang J J, et al. Application and development of metal filter materials in high-temperature gas filtration. Powder Metall Technol, 2018, 36(3): 230

    [9] 刘显胜, 顾虎, 平韶波, 等. Fe3Al金属滤芯特性及在U-gas煤气化装置中的应用. 洁净煤技术, 2017, 23(5): 119

    Liu X S, Gu H, Ping S B, et al. Performance of Fe3Al metal filter and its application in U-gas coal gasification plant. Clean Coal Technol, 2017, 23(5): 119

    [10] 孙卫军. 金属滤芯在壳牌气化炉除灰系统中的应用. 化工管理, 2013(6): 107 DOI: 10.3969/j.issn.1008-4800.2013.06.089

    Sun W J. Application of metal filter in ash removal system of shell gasifier. Chem Enterpr Manag, 2013(6): 107 DOI: 10.3969/j.issn.1008-4800.2013.06.089

    [11] 周贵龙. 煤气化装置飞灰过滤器用滤芯研究进展及应用初探. 山西化工, 2017(5): 112

    Zhou G L. Research progress and application of filter element in fly-ash filter of coal gasification plant. Shanxi Chem Ind, 2017(5): 112

    [12] 王浩, 杨军军, 刘冠颖, 等. Fe3Al滤芯在煤气化装置飞灰过滤器中的应用. 洁净煤技术, 2013, 19(1): 78

    Wang H, Yang J J, Liu G Y, et al. Application of Fe3Al filter element in fly ash filter of coal gasification device. Clean Coal Technol, 2013, 19(1): 78

    [13] 马江涛, 李准, 上官国青. 煤气化装置高温高压飞灰过滤器金属滤芯与陶瓷滤芯性能对比. 化工管理, 2015(3): 158 DOI: 10.3969/j.issn.1008-4800.2015.03.141

    Ma J T, Li Z, Shangguan G Q. Performance comparison of metal filter and ceramic filter in HPHT fly-ash filter of coal gasification device. Chem Enterp Manage, 2015(3): 158 DOI: 10.3969/j.issn.1008-4800.2015.03.141

    [14] 黄培云. 粉末冶金原理. 北京: 冶金工业出版社, 2006

    Huang P Y. Power Metallurgy Principles. Beijing: Metallurgy Industry Press, 2006

    [15] 王浩, 杨军军, 王凡, 等. 煤气化装置飞灰过滤器用滤芯研究进展及应用. 石油化工设备, 2012, 41(3): 68 DOI: 10.3969/j.issn.1000-7466.2012.03.020

    Wang H, Yang J J, Wang F, et al. Study progress and application on coal gasification device fly ash filter candle. Petro-Chem Equip, 2012, 41(3): 68 DOI: 10.3969/j.issn.1000-7466.2012.03.020

  • 期刊类型引用(3)

    1. 沙逢源,荣川,杨劼人,刘颖,邢辉,李志强. Ti-48Al-3Nb-2V-(Nd, Pr)合金显微组织演化规律与结构调控. 内蒙古工业大学学报(自然科学版). 2024(05): 443-452 . 百度学术
    2. 马静,王铁凝,姜秋月,冯志浩,张欣,李建辉. Al_2O_3-Ce_2O_3复合薄膜对304不锈钢抗高温氧化性能的影响. 材料保护. 2024(10): 19-26 . 百度学术
    3. 徐强林,吴小成,张玲. 建筑铝合金塑性变形件中裂纹源位置对力学性能和抗氧化性能的影响. 铸造. 2024(12): 1714-1720 . 百度学术

    其他类型引用(0)

图(11)  /  表(2)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  173
  • PDF下载量:  133
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-04-27
  • 录用日期:  2020-04-27
  • 网络出版日期:  2021-12-19
  • 刊出日期:  2022-06-27

目录

/

返回文章
返回