Preparation and properties research of Cu-based electrical contact composites containing Cr and NbSe2
-
摘要: 采用复压复烧工艺制备了含不同质量分数Cr和NbSe2的铜基电接触复合材料,利用光学电子显微镜、X射线衍射仪、硬度计、扫描电子显微镜等设备研究了铜基复合材料力学、电学和电摩擦学性能。结果表明,铜基复合材料的密度随着NbSe2含量的增多而增高,硬度和断裂强度随着Cr含量的增多而提高;Cr含量高的铜基复合材料磨痕表面极易生成CuO纳米片,改善了材料的摩擦性能,但降低了电学性能;含适当比例Cr和NbSe2的铜基复合材料有着较好力学、电学性能,且因NbSe2润滑膜和CuO纳米球的协同作用,改善了材料的摩擦性能。Abstract: The Cu-based electrical contact composite materials containing Cr and NbSe2 in the different mass fractions were prepared by repressing and reburning method in this study, and the mechanical, electrical, and tribological properties of copper-based electrical contact composites were investigated by optical electron microscope, X-ray diffractometer, hardness tester, and scanning electron microscope. The results show that, the density of the copper-based composites increases with the increase of NbSe2 content, while the hardness and fracture strength increase with the increase of Cr content. The copper-based composites with the higher Cr content can easily generate the CuO nanoplates on the wear scar surface, which improves the tribological properties but reduces the electrical properties of the copper-based composite materials. Consequently, the copper-based composites containing Cr and NbSe2 in the appropriate mass fraction show the better mechanical and electrical properties. Moreover, the tribological properties of the copper-based composites are also improved due to the synergistic effect of the NbSe2 lubricating film and CuO nanospheres.
-
锆酸钙材料(CaZrO3)具有优秀的抗水化性能、高熔点及良好的抗热震性能[1-5],拥有广阔的应用前景,由于自然界中不存在天然的CaZrO3,研究锆酸钙材料的合成就显得非常必要。制备CaZrO3的方法主要包括高温固相反应法、共沉淀法、溶胶-凝胶法、燃烧法和水热法等[6-8],高温固相法由于工艺简单、生产成本较低和生产量大等优点被人们广泛使用,但这种方法存在烧结温度高、制备锆酸钙致密性差等缺点。为了解决这些问题,研究者们在制备锆酸钙材料过程中向物系添加少量稀土氧化物、Al2O3、SiO2、CuO等添加剂,用于促进锆酸钙在低温下的烧结致密化;这些添加剂虽然可以起到促进锆酸钙材料烧结致密性的作用[9-11],但也会带来外来物质,降低CaZrO3高温使用性能。
CaCO3作为制备CaZrO3的添加剂在高温下分解生成CaO,不会对CaZrO3产生污染;同时,由于CaCO3和制备原料Ca(OH)2分解温度不同,产生CaO晶体顺序不同,可以对CaO晶体质点的扩散产生影响。故本文考虑向锆酸钙材料中添加少量CaCO3微粉,利用分解温度不同,生成CaO晶体顺序不同,促进CaZrO3烧结致密性,降低锆酸钙烧结温度。
1. 实验材料及方法
1.1 实验材料
以天津市科密欧化学试剂有限公司生产的分析纯Ca(OH)2和天津市光复精细化工研究生产的m-ZrO2为主要原料(平均粒度为7.4 μm和4.5 μm,纯度大于99%),实验中添加的CaCO3微粉为高纯微粉,纯度大于99%,其粒度分布如图 1示。可以看出,CaCO3微粉粒度较小,主要粒度分布在10 μm左右,D50为6 μm,D90为24 μm。
1.2 实验过程及方法
将Ca(OH)2和m-ZrO2按摩尔比1:1称量,等量分成五组,每组混合粉末中依次加入质量分数为0%、2%、4%、6%、8%和10%CaCO3微粉,再用卧式球磨机混合12 h,经过FLS手动四柱油压机在200 MPa压力下将混合粉末压制成ϕ20 mm圆柱试样,再用硅钼棒高温烧结炉在1600 ℃加热并保温3 h后随炉冷却到常温以备性能检测。
烧结前将压好的试样放置在烘箱内110 ℃下保温24 h,取出冷却至常温,测量其高度(L0);试样经高温煅烧,冷却到常温后测量其烧后高度(L1),根据式(1)计算试样烧结前后线变化率(ΔLd)。
$$ \Delta {L_{\rm{d}}} = \left[ {\left( {{L_1} - {L_0}} \right)/{L_0}} \right] \times 100\% $$ (1) 利用阿基米德排水法检测试样煅烧后的体积密度和显气孔率[12]。煅烧后试样经切割、抛光及热处理后,采用扫描电子显微镜(scanning electron microscope,SEM)观察其组织形貌,使用X射线衍射仪(X-ray diffractometer,XRD)对其进行物相分析。
2. 结果与讨论
2.1 烧结性能
图 2为烧结前后试样线变化率,从图 2可以看到,CaCO3微粉加入会改变试样线变化率。没有添加CaCO3微粉时,试样烧结前后线变化率为8.23%;当添加CaCO3微粉质量分数小于8%时,随CaCO3微粉添加量增大,试样烧结前后线变化率逐渐增大;当加入CaCO3微粉质量分数为8%时,试样收缩率达到最大值,为14.89%;继续增大CaCO3微粉添加量,试样烧结前后线变化率呈降低趋势。
图 3为高温煅烧后制备的锆酸钙体积密度和显气孔率,由图 3可以看到,CaCO3微粉的引入对制备的锆酸钙烧结性能产生影响。当没有添加CaCO3微粉时,制备的锆酸钙体积密度为3.4 g·cm-3,显气孔率为14.5%;随CaCO3质量分数增加,制备锆酸钙体积密度逐渐增加,显气孔率逐渐减小;当CaCO3微粉添加量为8%时,制备锆酸钙的体积密度最大,为4.02 g·cm-3,显气孔率最小,为8.6%;当CaCO3质量分数继续增大时,锆酸钙的体积密度开始降低,显气孔率反增大。
图 4为添加质量分数10%CaCO3制备样品的X射线衍射图谱,从图中可以看出,样品经1600 ℃保温3 h后主要物相为CaZrO3以及少量CaZr4O18。
2.2 材料微观结构
图 5为添加不同质量分数CaCO3微粉的样品在1600 ℃烧后放大10000倍的扫描电子显微组织结构图。从图 5可以看出,CaCO3微粉质量分数小于8%时,随CaCO3微粉添加量的增大,试样致密性逐渐增加,锆酸钙晶粒尺寸逐渐变大,且晶体发育越来越均匀;当CaCO3微粉质量分数为8%时,锆酸钙晶粒尺寸最大,试样中基本无封闭气孔;当CaCO3微粉质量分数继续增大时,样品中出现封闭气孔,致密性变差,锆酸钙晶粒尺寸有变小趋势。
利用图象处理软件对图 5进行定量晶体大小测定,获得锆酸钙的平均晶粒尺寸,见表 1。可以发现,没有引入CaCO3微粉时,样品中锆酸钙晶粒尺寸最小为4.08 μm;随CaCO3微粉质量分数增大,锆酸钙晶粒尺寸逐渐增大;当CaCO3微粉质量分数为8%时,锆酸钙晶粒尺寸达到最大,为5.45 μm;当CaCO3微粉质量分数量继续增大时,锆酸钙晶粒尺寸反而变小。
表 1 样品中CaCO3质量分数与锆酸钙晶粒直径的关系Table 1. Relationship between CaZrO3 particle diameter and CaCO3 addition content by massCaCO3质量分数/% 0 2 4 6 8 10 CaZrO3晶粒直径/μm 4.08 4.43 4.88 5.08 5.45 5.21 2.3 促烧机理
为了分析CaCO3微粉对锆酸钙烧结性能的影响,选取添加质量分数8%CaCO3微粉的试样,分别在500、600、700、800、900、1000及1100 ℃下保温3 h,分析在各个温度下烧后试样物相组成。图 6为试样在不同温度烧结后X射线衍射图谱。可以看出,试样经过500 ℃保温3 h后,物相组成没有太大变化;经过600 ℃保温3 h后,物相中开始有少量CaO出现,这是因为Ca(OH)2分解为CaO温度为580 ℃左右[13];当试样在700、800 ℃保温3 h后,Ca(OH)2质量分数逐渐减少,衍射峰逐渐减弱,CaO质量分数逐渐增大,衍射峰峰强逐渐增强,CaCO3衍射峰强在700 ℃之前逐渐增强,这是因为随烧结温度的升高,CaCO3晶粒发育越来越充分,烧成温度达到800 ℃时,CaCO3衍射峰强开始减弱,说明CaCO3开始分解为CaO;烧结温度为900 ℃时,CaCO3衍射峰逐渐减弱,CaO峰强增加迅速,这是因为CaCO3理论分解温度为850 ℃左右[14],分解生成高活性的CaO微晶均匀附着在Ca(OH)2分解形成CaO晶体表面,从而有利于CaO晶体扩散,可以促进CaO晶体长大,提高了CaO晶体的均匀性和生长致密性;继续升高烧结温度,CaCO3衍射峰强逐渐减弱乃至消失。
当烧结温度达到900 ℃时,物相中开始出现CaZrO3衍射峰,说明开始生成CaZrO3。随烧结温度的提高,CaZrO3衍射峰强增加迅速,一部分原因是因为温度升高,CaZrO3迅速长大,另一部分原因是因为CaCO3分解CaO微晶附着在Ca(OH)2分解形成的CaO晶体表面,促进CaO晶体长大,为高温下CaO和ZrO2反应生成CaZrO3奠定基础。但添加过多的CaCO3微粉时,由于CaCO3在分解过程中产生过量CO2气体逸出形成大量的气体孔洞,不利于质点的迁移,导致烧结性能变差。
3. 结论
(1)添加少量CaCO3微粉有利于锆酸钙烧结致密性。没有添加CaCO3微粉时,烧结温度为1600 ℃,锆酸钙体积密度为3.40 g·cm-3,显气孔率为14.5%;添加质量分数8%CaCO3微粉时,锆酸钙体积密度为4.02 g·cm-3,显气孔率为8.6%。
(2)添加少量CaCO3微粉有利于锆酸钙晶粒长大。烧结温度为1600 ℃,无添加CaCO3微粉时,锆酸钙晶粒尺寸为4.08 μm;添加质量分数8%CaCO3微粉时,锆酸钙晶粒尺寸为5.45 μm。
-
表 1 铜基复合材料试样组成成分及物理性能
Table 1 Composition and physical properties of the copper-based composite samples
试样编号 成分质量分数/% 密度, ρ/(kg·m-3) 相对密度,ρr/% 表面粗糙度,Ra/μm Cu NbSe2 Cr Sel 65 0 35 6.96×103 84.9 0.217 Se2 65 10 25 7.13×103 88.1 0.202 Se3 65 15 20 7.24×103 90.2 0.214 Se4 65 20 15 7.39×103 92.7 0.186 Se5 65 25 10 7.42×103 94.0 0.175 Se6 65 35 0 7.26×103 93.3 0.193 表 2 金属及其金属氧化物的电阻率
Table 2 Electrical resistivity of the metals and metal oxides
材料 Nb NbO Cr Cr2O3 Cu CuO Cu20 NbSe2 电阻率/(Ω·m) 12.5 × 10-8 10-7 12.9 × 10-8 — 1.534 × 10-8 10~50 10~50 5.35 × 10-6 -
[1] Miura H, Nishiyama N, Togashi N, et al. Structure, conductivity and mechanical properties of non-equilibrium copper-based crystalline alloy nano-composites. Intermetallics, 2010, 18(10): 1860 DOI: 10.1016/j.intermet.2010.02.033
[2] Asgharzadeh H, Eslami S. Effect of reduced graphene oxide nanoplatelets content on the mechanical and electrical properties of copper matrix composite. J Alloys Compd, 2019, 806: 553 DOI: 10.1016/j.jallcom.2019.07.183
[3] Khobragade N, Sikdar K, Kumar B, et al. Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion. J Alloys Compd, 2019, 776: 123 DOI: 10.1016/j.jallcom.2018.10.139
[4] Zhao X W, Zang C G, Ma Q K, et al. Thermal and electrical properties of composites based on (3-mercaptopropyl) trimethoxysilane-and Cu-coated carbon fiber and silicone rubber. J Mater Sci, 2016, 51(8): 4088 DOI: 10.1007/s10853-016-9730-0
[5] Cai A H, Xiong X, Liu Y, et al. Electrical, thermal, and mechanical properties of Cu50Zr40Ti10 bulk amorphous composite. Mater Sci Eng A, 2012, 535: 92 DOI: 10.1016/j.msea.2011.12.046
[6] 张政委, 纪箴, 贾成厂, 等. 碳纳米管和氧化铝颗粒协同增强铜基复合材料的制备与性能研究. 粉末冶金技术, 2016, 34(5): 356 DOI: 10.3969/j.issn.1001-3784.2016.05.007 Zhang Z W, Ji Z, Jia C C, et al. Preparation and properties of copper matrix composites reinforced by CNTs and Al2O3. Powder Metall Technol, 2016, 34(5): 356 DOI: 10.3969/j.issn.1001-3784.2016.05.007
[7] 吴琼, 贾成厂, 聂俊辉. 镀钨碳纳米管增强镁基复合材料的摩擦磨损性能研究. 粉末冶金技术, 2018, 36(6): 423 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201806004.htm Wu Q, Jia C C, Nie J H. Friction and wear properties of magnesium matrix composites reinforced by tungsten-coated carbon nanotubes. Powder Metall Technol, 2018, 36(6): 423 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201806004.htm
[8] Huang S Y, Feng Y, Liu H J, et al. Electrical sliding friction and wear properties of Cu-MoS2-graphite-WS2, nanotubes composites in air and vacuum conditions. Mater Sci Eng A, 2013, 560(2): 685 http://www.sciencedirect.com/science/article/pii/S0921509312014499
[9] 刘清阳, 王华君, 周春杨, 等. 新型自润滑模具材料的制备和高温性能研究. 粉末冶金技术, 2020, 38(1): 51 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.008 Liu Q Y, Wang H J, Zhou C Y, et al. Preparation and high temperature properties of new self-lubricating die materials. Powder Metall Technol, 2020, 38(1): 51 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.008
[10] Tang H, Cao K S, Wu Q, et al. Synthesis and tribological properties of copper matrix solid self-lubricant composites reinforced with NbSe2 nanoparticles. Cryst Res Technol, 2011, 46(2): 195 DOI: 10.1002/crat.201000499
[11] 田保红, 程新乐, 张毅, 等. 放电等离子烧结Cu-Mo-WC复合材料电接触特性. 稀有金属材料与工程, 2018, 47(3): 943 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201803037.htm Tian B H, Chen X L, Zhang Y, et al. Electrical contact characteristics of Cu-Mo-WC composites prepared by spark plasma sintering process. Rare Met Mater Eng, 2018, 47(3): 943 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201803037.htm
[12] Watanabe Y. High-speed sliding characteristics of Cu-Sn-based composite materials containing lamellar solid lubricants by contact resistance studies. Wear, 2008, 264(7): 624 http://www.sciencedirect.com/science/article/pii/S0043164807005650
[13] 毛善成. 铜氧面电阻率-温度线性依赖与空穴-声子散射. 沈阳大学学报(自然科学版), 2016, 28(1): 1 DOI: 10.3969/j.issn.2095-5456.2016.01.001 Mao S C. Linear dependence of resistivity-temperature and holon-phonon scattering in Cu-O planes. J Shenyang Univ Nat Sci, 2016, 28(1): 1 DOI: 10.3969/j.issn.2095-5456.2016.01.001
[14] Wood J T, Griffin Jr A J, Embury J D, et al. The influence of microstructural scale on the combination of strength and electrical resistivity in copper based composites. J Mech Phys Solids, 1995, 44(5): 737 http://www.sciencedirect.com/science/article/pii/0022509696000105
[15] 常仕英, 郭忠诚. 铜粉抗氧化性处理技术的进展. 粉末冶金工业, 2007, 17(1): 49 DOI: 10.3969/j.issn.1006-6543.2007.01.010 Change S Y, Guo Z C. Recent advance in technology of anti-oxidation copper powder. Powder Metall Ind, 2007, 17(1): 49 DOI: 10.3969/j.issn.1006-6543.2007.01.010
[16] 黄仕银. 电流密度对铜基自润滑材料电摩擦性能的影响. 兵器材料科学与工程, 2020, 43(2): 77 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG202002019.htm Huang S Y. Influence of current density on electrical friction property of Cu-based self-lubricating materials. Ordn Mater Sci Eng, 2020, 43(2): 77 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG202002019.htm
[17] 韩明, 杜建华, 宁克焱, 等. 温度分布对铜基摩擦材料点蚀损伤的影响. 粉末冶金技术, 2019, 37(1): 18 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.003 Han M, Du J H, Ning K Y, et al. Effect of temperature distribution on pitting damage of copper-based friction material. Powder Metall Technol, 2019, 37(1): 18 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.003
[18] 刘焕超. 多组元改性铜基电接触复合材料的研究[学位论文]. 济南: 济南大学, 2018 Liu H C. Study on Copper Based Electrical Contact Composites Modified by Multi Component[Dissertation]. Jinan: University of Jinan, 2018
[19] 施琴. 过渡族金属硒化物电接触复合材料的研究[学位论文]. 镇江: 江苏大学, 2017 Shi Q. Research on Electrical Contact Composites Containing Transition Metal Selenides[Dissertation]. Zhenjiang: Jiangsu University, 2017
[20] 刘宁. 粉末冶金法制备Cu/C复合材料的性能研究[学位论文]. 哈尔滨: 哈尔滨理工大学, 2014 Liu N. Study of Cu Matrix Graphite Friction Composite by Powder Metallurgy[Dissertation]. Harbin: Harbin University of Science and Technology, 2014
[21] Li G J, Yang T Y, Ma Y Y, et al. Mechanical characteristics of the Ag/SnO2 electrical contact materials with Cu2O and CuO additives. J Alloys Compd, 2020, 817: 152710 DOI: 10.1016/j.jallcom.2019.152710
[22] Li J F, Shi Q, Zhu H J, et al. Tribological and electrical behavior of Cu-based composites with addition of Ti-doped NbSe2 nanoplatelets. Ind Lubr Tribol, 2018, 70(3): 560 DOI: 10.1108/ILT-10-2016-0259
[23] 王丽, 张晓燕, 雷源源, 等. 新型铜基电接触材料的高温氧化性能研究. 有色金属(冶炼部分), 2016(4): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-METE201604015.htm Wang L, Zhang X Y, Lei Y Y, et al. Study on high-temperature oxidation properties of new copper-based electrical contact materials. Nonferrous Met Extr Metall, 2016(4): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-METE201604015.htm
[24] Valladares L De Los S, Salinas D H, Dominguez A B, et al. Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films, 2012, 520(20): 6368 DOI: 10.1016/j.tsf.2012.06.043
[25] Koshy C P, Rajendrakumar P K, Thottackkad M V. Experimental evaluation of the tribological properties of CuO nano-lubricants at elevated temperatures//Proceedings of International Conference on Advances in Tribology and Engineering Systems. New Delhi, 2014: 391 http://www.researchgate.net/publication/278326951_Experimental_Evaluation_of_the_Tribological_Properties_of_CuO_Nano-Lubricants_at_Elevated_Temperatures
[26] Bahadur S, Polineni V K. Tribological studies of glass fabric-reinforced polyamide composites filled with CuO and PTFE. Wear, 1996, 200(1-2): 95 DOI: 10.1016/S0043-1648(96)07327-9
[27] Wang Q H, Zhang X R, Pei X Q. A synergistic effect of graphite and nano-CuO on the tribological behavior of polyimide composites. J Macromol Sci Part B Phys, 2010, 50(2): 213 DOI: 10.1080/00222341003641156
-
期刊类型引用(1)
1. 路跃,刘国齐,杨文刚,燕鹏飞,马渭奎,李红霞. 烧结助剂对锆酸钙材料性能的影响. 耐火材料. 2023(05): 407-411 . 百度学术
其他类型引用(1)