Effect of graphite content on friction and wear properties of copper-based friction materials
-
摘要: 采用粉末冶金压烧技术制备了含不同质量分数石墨的铜基摩擦材料,研究了石墨含量对摩擦材料微观组织、磨损性能和磨损机理的影响。结果表明:铜基体的连续性随石墨含量增加而降低,动摩擦系数随石墨含量的增加先增加后降低,磨损量随着石墨含量的增加而减小;材料的磨损机理为犁沟式磨料磨损;石墨质量分数为16%时,试样动摩擦系数和静摩擦系数最高并且稳定,具有最好的摩擦磨损性能。Abstract: Copper-based friction materials with graphite in the different mass fraction were prepared by powder metallurgy sintering technology. The effects of graphite content on the microstructure, wear properties, and wear mechanism of the friction materials were studied. The results show that, with the increase of graphite content, the copper matrix continuity decreases, the dynamic friction coefficient increases first and then decreases, and the abrasion loss decreases. The wear mechanism of the friction material is plough-type abrasive wear. When the graphite mass fraction is 16%, the dynamic friction coefficient and the static friction coefficient are the highest and stable, showing the best friction and wear properties.
-
Keywords:
- copper-based friction material /
- powder metallurgy /
- graphite /
- friction and wear /
- wear mechanism
-
粉末冶金是一项集材料制备与零件成形于一体的先进制造技术,具有效率高、成本低、耗能小等诸多优点。粉末冶金法生产的机械结构件能够满足不同用途结构零部件的性能要求,因此被广泛应用于汽车制造、航空航天等领域[1]。随着汽车生产规模的不断扩大,汽车行业对粉末冶金制品需求量越来越大。目前,全球粉末冶金制品总量的70%以上用于汽车工业[2]。然而,常规方法生产的粉末冶金零件制品常存在一些孔隙,导致其耐磨性能、疲劳强度、表面质量等都大大降低,限制了其在汽车行业的应用[3]。粉末冶金制品的密度和密度分布均匀性不仅影响成品加工性能和表面质量,同时还影响其综合力学性能和物理性能。
为了获得高密度且密度分布均匀的粉末冶金制品,国内外研究人员对颗粒和粉体的运动规律进行了大量的研究,研究表明,颗粒在振动条件下会产生如巴西果效应、颗粒对流、表面驻波等现象[4-6]。Vanel等[7]研究了不同振动频率对颗粒床分离的影响,得到了不同振动频率范围内颗粒床的运动情况;Majidi等[8]运用孔隙追踪方法研究了非球形颗粒系统的填充密度;刘应书等[9]研究了各项振动参数对粒径分布范围在1.3~3.0 mm之间的分子筛填充密度的影响,得到装填密度随各项参数的变化规律和最佳工艺参数;刘波等[10]研究了振动频率和振动时间对钕铁硼永磁粉体填充密度的影响,得出在频率为70 Hz时粉体填充密度最高;随着振动时间的增加,填充密度先增大后趋于稳定;陈水胜等[11]研究了玛瑙球作为辅助介质时振动特性对碳棒内粉末颗粒填充效果的影响,发现加入辅助介质的振动可以提高填料的填充密度。然而,目前关于振动对铁粉填充效果的研究还很少见。本文运用EDEM离散元软件模拟纯铁粉体在模腔内的振动状态,分析振动频率、振动幅度、振动时间对粉体振动填充密度的影响规律,通过实验验证,实验结果与仿真结果相一致,可以为提高纯铁粉体填充密度提供理论依据。
1. 数学模型的建立
离散元法(discrete element method, DEM)是由美国学者Cundalll[12]提出的一种用于研究非连续性物质结构和运动规律的数值方法,以不同本构关系的牛顿第二定律为基础理论,基于动态松弛法求解方程。离散单元法的基本运动方程[13]如式(1)所示。
$$ m \ddot{u}(t)+c \dot{u}(t)+k u(t)=f(t) $$ (1) 式中:m为质量,kg; c为阻尼系数,N·s·m-1; k为刚度系数,N·m-1; u为位移,m; t为时间,s; f为单元所受的载荷,N。
假定t+∆t时刻以前的变量f(t)、u(t)、$\dot u(t - \Delta t)$、$\ddot u(t - \Delta t)$、$u(t - \Delta t)$、等已知,利用中心差分法,式(1)变为式(2)。
$$ \begin{array}{l} m[u(t+\Delta t)-2 u(t)+u(t-\Delta t)] /(\Delta t)^{2}+ \\ \ \ c[u(t+\Delta t)-u(t-\Delta t)] / 2 \Delta t+k u(t)=f(t) \end{array} $$ (2) 式中:∆t为计算时步。由式(2)可以解得式(3)。
$$ \begin{aligned} u(t+\Delta t)=&\left\{(\Delta t)^{2} f(t)+\left(\frac{c \Delta t}{2}-m\right) u(t-\Delta t)+\right.\\ &\left.\left[2 m-k(\Delta t)^{2}\right] u(t)\right\} /\left(m+\frac{c \Delta t}{2}\right) \end{aligned} $$ (3) 由于式(3)等号右边的量都是已知量,因此可以求出左边的量u(t+∆t),从而就可以得到单元在t时刻的速度$\dot u(t)$和加速度ü(t)。
粉体振动填充的实质是通过颗粒与颗粒、颗粒与模腔之间的接触、碰撞来传递能量,使颗粒产生位移,位置发生重排,破坏颗粒间原有的“拱桥效应”,小颗粒填充到大颗粒间隙中,最终达到孔隙率减小和结构致密化的目的。为了正确地模拟振动填充过程,本文采用软球接触模型,颗粒间的接触力学模型如图 1[14]所示。
当两颗粒发生弹性接触时,对上述接触模型进行力学分析,颗粒间的法向力(Fn)如式(4)所示。
$$ {F_{\rm{n}}} = \frac{4}{3}{E^*}\sqrt {{R^*}{\alpha ^3}} $$ (4) 式中:α为法向重叠量,m; R*为等效颗粒半径,m; E*为等效弹性模量,Pa。
颗粒间的法向阻尼力(Fnd)如式(5)所示。
$$ F_{\rm{n}}^{\rm{d}} = - 2\sqrt {\frac{5}{6}} \beta \sqrt {{S_{\rm{n}}}{m^*}} v_{\rm{n}}^{{\rm{rel}}} $$ (5) 式中:m*为等效质量,kg; $\nu _{\rm{n}}^{{\rm{rel}}}$为法向相对速度,m·s-1; Sn为法向重叠刚度,N·m-1;β为系数。β和Sn可由式(6)和式(7)求出。
$$ \beta = \frac{{\ln e}}{{\sqrt {{{(\ln e)}^2} + {{\rm{ \mathsf{ π} }}^2}} }} $$ (6) $$ {S_{\rm{n}}} = 2{E^*}\sqrt {\alpha {R^*}} $$ (7) 式中:e为恢复系数。
颗粒间的切向力(Ft)如式(8)所示。
$$ F_{\mathrm{t}}=-S_{\mathrm{t}} \delta $$ (8) 式中:δ为切向重叠量,m; St为切向重叠刚度,N·m-1。St可由式(9)求出。
$$ S_{\mathrm{t}}=8 G^{*} \sqrt{\alpha R^{*}} $$ (9) 式中:G*为等效剪切模量,MPa。
颗粒间的切向阻尼力(Ftd)如式(10)所示。
$$ F_{\mathrm{t}}^{\mathrm{d}}=-2 \sqrt{\frac{5}{6}} \beta \sqrt{S_{\mathrm{t}} m^{*}} v_{\mathrm{t}}^{\mathrm{rel}} $$ (10) 式中:$\nu _{\rm{t}}^{{\rm{rel}}}$为切向相对速度,m·s-1。
滚动摩擦可以通过接触表面上的力矩(Ti)来表示,如式(11)所示。
$$ \boldsymbol{T}_{\mathrm{i}}=-\mu_{\mathrm{r}} F_{\mathrm{n}} R_{\mathrm{i}} \boldsymbol{\omega}_{\mathrm{i}} $$ (11) 式中:μr为滚动摩擦因数;Ri为质心到接触点间的距离,m;ωi为接触点处物体的单位角速度矢量,rad·s-1。
2. 建模与仿真分析
EDEM离散元软件[15-16]是英国DEM-Solution公司的产品之一,是国际通用的基于离散单元法模拟和分析颗粒系统过程处理和生产操作的CAE软件,该软件的主要功能是仿真、分析和观察粒子流的运动规律。利用EDEM软件可以分析物体的混合和分离、颗粒的损伤和磨损、颗粒的包装和表面处理等诸多问题。
2.1 颗粒与几何模型建立
铁粉多为致密的块状或近球状致密颗粒,其颗粒形态具有多样性和复杂性,采用真实尺寸的颗粒进行仿真,仿真时间长、效率低。为了提高仿真速度和模拟现实中的颗粒形态,本文运用UG软件建立非球形颗粒模型并导入EDEM中[17]。为了达到研究在振动状态下颗粒运动及颗粒孔隙率变化的目的,观察在不同振动特性条件下粉体的填充率和孔隙率的变化规律,将颗粒的实际尺寸进行放大,此过程并不影响颗粒间的运动特性,即不影响粉体运动的真实性,以达到快速完成仿真并得到结果的目的。颗粒模型如图 2所示,粒径呈正态分布,方差为0.05。颗粒的材料参数如下:泊松比0.3,剪切模量7.9×1010 Pa,颗粒密度7850 kg·m-3。
在UG软件中创建模腔的几何模型,并将其导入到EDEM中,简化的模腔为120 mm×120 mm×120 mm的立方体盒子。模腔材料为钢,参数如下:泊松比0.3,剪切模量7×1010 Pa,颗粒密度7800 kg·m-3。根据建立的接触力学模型,选择颗粒与颗粒、颗粒与模腔的接触模型均为Hertz-Mindlin(no slip)接触模型,该模型可以准确表征物理情境,对于力的计算高效且准确。设置重力加速度为-9.81 m·s-2,对颗粒与颗粒、颗粒与模腔之间的接触参数设置如表 1所示[14]。
表 1 铁粉颗粒接触模型参数Table 1. Contact model parameters of Fe powder particles材料 恢复系数 静摩擦系数 滚动摩擦系数 颗粒-颗粒 0.15 0.30 0.01 颗粒-钢 0.13 0.25 0.01 在Factories面板中设置工厂类型为动态生成,生成的颗粒要完全落到模腔内,生成速度为5000个/s,从0 s开始生成直至填满模腔。为了提高仿真速度,给颗粒提供一个竖直向下的速度1 m·s-1。
2.2 EDEM求解器设置
Rayleigh时间步长(TR)的计算公式[14]如式(12)所示。
$$ {T_{\rm{R}}} = \frac{{{\rm{ \mathsf{ π} }}R\sqrt {\rho /G} }}{{(0.1631\upsilon + 0.8766)}} $$ (12) 式中:R为颗粒半径,m;ρ为颗粒密度,kg·m-3; G为剪切模量,MPa;$\upsilon $为泊松比。
如果时间步长选得过大,有可能发生计算错误;如果步长选得过小,又会增加计算机的计算量,导致仿真时间过长,因此选择合适的步长非常重要。设置时间步长为30%TR,同时设置网格尺寸为3Rmin(Rmin为最小颗粒半径)。
2.3 模拟方案设计
为了研究振动特性对铁粉填充密度的影响,本文主要从振动频率、振动幅度和振动时间三个方面研究对填充密度的影响,研究的振动频率范围为5~100 Hz,振幅范围为0.1~1.4 mm,振动时间为70 s。所有的颗粒都是从一定高度的随机位置生成,然后在重力作用下落入模腔。颗粒生成完毕后,静置使整个系统达到稳定状态。颗粒生成状态如图 3所示。
每次振动结束后,在后处理模块中对结果进行分析。模腔中的孔隙率可以通过Selection面板中的Geometry Bin功能得出。振动填充密度的计算公式如式(12)所示。
$$ \rho_{\mathrm{B}}=(1-\varepsilon) \rho_{\mathrm{P}} $$ (13) 式中:ε为孔隙率;ρB为填充密度;ρP为颗粒密度。
3. 模拟结果与讨论
3.1 振动时间对填充密度的影响
在振动频率为30 Hz、振幅分别为0.4、0.6、0.8 mm时,得到振动时间与填充密度的关系曲线,如图 4所示。从图 4可以看出,随着振动时间的增加,粉体填充密度逐渐增加并趋于稳定;随着振幅的增加,到达恒定填充密度的时间减少,当振幅大于0.6 mm时,填充密度降低。在振动时间为0~30 s时,由于振动的存在,颗粒具有惯性力,使颗粒产生位移,位置发生重排,破坏颗粒间原有的“拱桥效应”,小颗粒进入大颗粒之间填充间隙,填充密度在短时间内迅速增大;30 s之后,颗粒堆积更加密实,填充密度趋于稳定。
3.2 振动频率对填充密度的影响
在振动幅度为0.6 mm、振动时间为30 s时,得到振动频率与填充密度的关系曲线,如图 5所示。从图 5可以看出,振动频率不同会对填充密度产生较大的影响,随着频率增大,填充密度先增加后减小。在振动频率低于30 Hz时,随着振动频率的增大,填充密度不断增加;当振动频率为30 Hz时,填充密度达到最大,为5.17 g·cm-3;当振动频率高于30 Hz时,随着频率的增加,填充密度减小。
当振动频率在5~10 Hz之间变化时,随着振动频率增大,填充密度变化较小,这是因为振动频率较低,振动强度较小,导致颗粒产生的惯性力小,破坏松装填充时产生的“拱桥现象”的能力弱;当振动频率在10~30 Hz范围内时,颗粒产生的惯性力逐渐增大,颗粒在每次振动中的移动、重排能力增强,小颗粒进入大颗粒之间填充间隙,破坏了“拱桥现象”,填充密度发生了显著的变化;当振动频率大于30 Hz时,振动强度随着振动频率的增加而增加,颗粒获得更大的力,表现为颗粒运动加剧,颗粒间的碰撞更多,在模腔内形成对流,颗粒出现分层现象,而且振动频率越大,分层现象越明显,颗粒会出现“沸腾”现象,振动填充效果较差。图 6为振动频率为30 Hz和100 Hz时颗粒振动受力云图对比。
3.3 振动幅度对填充密度的影响
在振动频率为30 Hz、振动时间为30 s时,得到振动幅度与填充密度的关系曲线,如图 7所示。从图 7可以看出,随着振幅的增大,粉体填充密度先增加后减小。在振动幅度小于0.6 mm时,填充密度随振动幅度增加而增加;当振动幅度为0.6 mm时,填充密度达到最大,为5.17 g·cm-3;当振动幅度大于0.6 mm时,填充密度随振幅增加而减小,而且振幅过大时,颗粒也会出现“沸腾”现象。
4. 对比实验及分析
利用Long Date P系列吸合式电磁振动台对纯铁粉颗粒填充密度进行实验验证,实验装置如图 8所示。通过振动实验对粉体填充密度的变化进行分析,研究了振动幅度为0.6 mm、振动时间为30 s时,粉体填充密度随不同振动频率的变化规律。每次振动结束后,测量铁粉颗粒的装填高度,填充密度的计算公式如式(14)所示
$$ \rho = \frac{m}{{{a^2}h}} $$ (14) 式中:ρ为填充密度,g·cm-3; m为铁粉质量,g; a为模腔底面边长,cm; h为装填高度,cm。
根据计算得到的填充密度,在振动幅度为0.6 mm、振动时间为30 s条件下,绘制填充密度随振动频率变化的关系曲线,如图 9所示。从图 9中可以看出,随着振动频率增大,填充密度先增加后减小;当振动频率为30 Hz时,填充密度达到最大,为5.01 g·cm-3。从图 5和图 9的比较可以看出,实验结果与仿真结果相近,因此通过振动可以有效提高铁粉的填充密度,同时说明了仿真结果的可靠性。
5. 结论
(1)在纯铁粉体压制前,通过机械振动可以促进粉体颗粒的重排、移动,破坏“拱桥现象”,降低粉体孔隙率,提高填充密度。
(2)振动频率和振动幅度会对粉体填充密度造成较大的影响,随着振动频率和振动幅度的增大,填充密度先增加后减小。当振动频率较低或振幅较小时,填充密度变化不大;当振幅过大或频率过高时,颗粒会出现“沸腾”现象,填充密度降低。在仿真条件下,振动频率30 Hz、振动幅度0.6 mm时振动填充效果最好。
(3)填充密度随时间的增大而增加并趋于稳定,并且振幅越大,达到最大填充密度的时间越短。
-
表 1 实验用铜基粉末冶金摩擦材料化学成分(质量分数)
Table 1 Chemical composition of the copper-based frictionmaterials by powder metallurgy used in experiment
% 试样编号 Cu 合金元素 二氧化硅 石墨 A1 余量 16 3 10 A2 余量 16 3 12 A3 余量 16 3 16 A4 余量 16 3 20 表 2 摩擦磨损试验参数
Table 2 Friction and wear test parameters
转速/(r·min-1) 压力/MPa 油温/℃ 惯量/(kg·m2) 接合次数/次 油流量/(mL·min-1·cm-2) 2370 2 75~80 0.376 1500 0.37 -
[1] Kovalchenko A M, Fushchich O I, Danyluk S. The tribological properties and mechanism of wear of Cu-based sintered powder materials containing molybdenum disulfide and molybdenum diselenite under unlubricated sliding against copper. Wear, 2012, 290-291: 106 http://www.sciencedirect.com/science/article/pii/s0043164812001767
[2] 吴辉, 郭彪, 李强, 等. Cr2AlC含量对铜基复合材料摩擦磨损性能的影响. 粉末冶金技术, 2019, 37(3): 184 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.004 Wu H, Guo B, Li Q, et al. Effect of Cr2AlC content on friction and wear properties of copper matrix composites. Powder Metall Technol, 2019, 37(3): 184 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.004
[3] 任澍忻, 陈文革, 冯涛, 等. 粉末冶金制备碳纤维增强铁-铜基摩擦材料的组织与性能. 粉末冶金技术, 2020, 38(2): 104 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.004 Ren S X, Chen W G, Feng T, et al. Microstructure and properties of carbon fiber reinforced Fe-Cu based friction materials prepared by powder metallurgy. Powder Metall Technol, 2020, 38(2): 104 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.004
[4] 代世勋, 张竹林. 石墨与BN添加对车离合器用铜基摩擦材料磨损性能的影响. 粉末冶金工业, 2019, 29(3): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201903022.htm Dai S X, Zhang Z L. Effects of graphite and BN addition on wear performance of copper-based friction materials for vehicle clutches. Powder Metall Ind, 2019, 29(3): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201903022.htm
[5] 王振波, 王秀飞, 白同庆, 等. 不同类型莫来石对铜基材料摩擦磨损性能的影响. 粉末冶金技术, 2015, 33(3): 190 DOI: 10.3969/j.issn.1001-3784.2015.03.007 Wang Z B, Wang X F, Bai T Q, et al. The effect of different types of mullite on friction and wear properties of copper-based materials. Powder Metall Technol, 2015, 33(3): 190 DOI: 10.3969/j.issn.1001-3784.2015.03.007
[6] 杨彬彬, 张京凯. 增强铁粉对货车制动器用铜基摩擦片摩擦磨损性能的影响. 粉末冶金工业, 2019, 29(5): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201905018.htm Yang B B, Zhang J K. Effect of reinforcing iron powder on the friction and wear performance of the copper base friction plate for truck brake. Powder Metall Ind, 2019, 29(5): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201905018.htm
[7] 张国洪, 许成法, 冯秀明, 等. 纳米颗粒增强铜基喷撒摩擦片的摩擦学性能研究. 粉末冶金工业, 2019, 29(4): 51 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201904018.htm Zhang G H, Xu C F, Feng X M, et al. Tribological properties of nano-particle reinforced copper-based spray friction plate. Powder Metall Ind, 2019, 29(4): 51 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201904018.htm
[8] 贾德晋. 铜基粉末冶金摩擦材料基体摩擦磨损性能研究[学位论文]. 郑州: 郑州轻工业学院, 2018 Jia D J. Friction and Wear Properties of Copper-Based Powder Metallurgy Friction Materials[Dissertation]. Zhengzhou: Zhengzhou University of Light Industry, 2018
[9] 张振. 粉末冶金摩擦材料的应用现状及对原材料的要求. 冶金管理, 2019(9): 47 https://www.cnki.com.cn/Article/CJFDTOTAL-YJGL201909035.htm Zhang Z. Application status and raw material requirements of powder metallurgical friction materials. China Steel Focus, 2019(9): 47 https://www.cnki.com.cn/Article/CJFDTOTAL-YJGL201909035.htm
[10] 张发厅. 不同种类石墨及碳纤维对铜基粉末冶金摩擦材料性能的影响. 粉末冶金工业, 2018, 28(5): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201805012.htm Zhang F T. Effects of different kinds of graphite and carbon fiber on the properties of copper-based powder metallurgy friction materials. Powder Metall Ind, 2018, 28(5): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201805012.htm
[11] Zhang X, Zhang Y Z, Du S M, et al. Study on the tribological performance of copper-based powder metallurgical friction materials with Cu-coated or uncoated graphite particles as lubricants. Materials, 2018, 11(10): 6 http://www.ncbi.nlm.nih.gov/pubmed/30340317
[12] 李雪飞, 上官宝, 张永振. 石墨/铜复合材料的载流摩擦磨损性能. 机械工程材料, 2013, 37(4): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201304017.htm Li X F, Shangguan B, Zhang Y Z. Friction and wear properties with electrical current of graphite/copper composites. Mater Mech Eng, 2013, 37(4): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201304017.htm
[13] Da H H, Rafael M. A novel electrical contact material with improved self-lubrication for railway current collectors. Wear, 2001, 249(7): 626 DOI: 10.1016/S0043-1648(01)00700-1
[14] 李辉, 杜建华, 王浩旭, 等. 碳纤维/碳基湿式摩擦材料的摩擦学性能. 装甲兵工程学院学报, 2017, 31(5): 104 DOI: 10.3969/j.issn.1672-1497.2017.05.020 Li H, Du J H, Wang H X, et al. Tribological properties of carbon fiber reinforced/carbon-based (CF/C) wet friction material. J Acad Arm Force Eng, 2017, 31(5): 104 DOI: 10.3969/j.issn.1672-1497.2017.05.020
[15] 尹延国, 刘君武, 郑治祥, 等. 石墨对铜基自润滑材料高温摩擦磨损性能的影响. 摩擦学学报, 2005, 25(3): 216 DOI: 10.3321/j.issn:1004-0595.2005.03.006 Yin Y G, Liu J W, Zheng Z X, et al. Effect of graphite on the friction and wear properties of Cu alloy-matrix self-lubricating composites at elevated temperature. Tribology, 2005, 25(3): 216 DOI: 10.3321/j.issn:1004-0595.2005.03.006