高级检索

选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能

张亚民, 吴姚莎, 杨均保, 曾思惠

张亚民, 吴姚莎, 杨均保, 曾思惠. 选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能[J]. 粉末冶金技术, 2023, 41(3): 234-240. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050012
引用本文: 张亚民, 吴姚莎, 杨均保, 曾思惠. 选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能[J]. 粉末冶金技术, 2023, 41(3): 234-240. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050012
ZHANG Yamin, WU Yaosha, YANG Junbao, ZENG Sihui. Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(3): 234-240. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050012
Citation: ZHANG Yamin, WU Yaosha, YANG Junbao, ZENG Sihui. Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(3): 234-240. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050012

选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能

基金项目: 广东省普通高校重点领域专项项目(2022ZDZX3085);广东省普通高校特色创新项目(2020KTSCX323);中山市科技计划项目(2021B2017,2021SYF08);中山火炬职业技术学院校级科研项目(2022BS03,2021CXYZD02)
详细信息
    通讯作者:

    吴姚莎: E-mail: 547656588@qq.com

  • 中图分类号: TG142.7

Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting

More Information
  • 摘要:

    以气雾化AlSi10Mg粉和高纯TiB2粉为原料,采用高能球磨和等离子球化技术制备选区激光熔化用TiB2/AlSi10Mg复合粉体,使用X射线衍射仪、扫描电子显微镜、透射电子显微镜、激光粒度仪和紫外可见光分光光度计等对等离子球化前后TiB2/AlSi10Mg复合粉体组织结构和性能进行表征。结果表明:经等离子球化后的TiB2/AlSi10Mg复合粉体具有优异的球形度,粒径分布均匀。此外,部分TiB2与Al之间发生了化学反应生成Al3Ti相,获得冶金结合界面,提高了界面结合强度。该复合粉体具有近似于TiB2包覆AlSi10Mg的核壳结构,改善了铝合金粉末的激光吸收率,由23.2%(AlSi10Mg)增加至42.1%(TiB2/AlSi10Mg)。

    Abstract:

    TiB2/AlSi10Mg composite powders used for selective laser melting were prepared by high-energy ball milling and plasma spheroidization, using the AlSi10Mg powders and high purity TiB2 powders as the raw materials prepared by gas atomization. The microstructure and properties of TiB2/AlSi10Mg composite powders before and after plasma spheroidization were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), laser particle size analyzer, and UV-visible spectrophotometer. The results show that the plasma spheroidization TiB2/AlSi10Mg composite powders have the excellent sphericity and the uniform particle size distribution. Moreover, the chemical reactions between TiB2 and Al may form the Al3Ti phases, which can obtain the metallurgical bonding interface and improve the bonding strength. The core-shell structure of the composite powders is similar to that of TiB2 coated with AlSi10Mg. The laser absorption rate of the powders is improved from 23.2% (AlSi10Mg) to 42.1% (TiB2/AlSi10Mg).

  • 铝合金具有比强度高、热膨胀系数低、导热性好等优势,被广泛应用于航空航天和汽车工业等领域[13]。随着科学技术快速发展,一些机械核心部件结构越来越复杂,传统制备技术难以加工,选区激光熔化(selective laser melting,SLM)技术的出现完美解决了这些问题[49]。该技术无需装夹即可直接制备出任意形状和结构的零部件,尤其适合金属和合金材料的制备成形,如钛合金[45]、不锈钢[68]和铝合金[910]等。作为一种典型的铸造铝合金,AlSi10Mg合金具有优异的焊接和铸造性能,受到选区激光熔化成形研究者的广泛关注[1115]。但铝合金激光吸收率低,导致选区激光熔化成形件孔隙率高、相对密度低,力学性能不突出,难以满足工业应用的要求[16]。为进一步提高成形件质量,研究人员在成形工艺和后处理等方面展开研究,并取得了一定效果[1718]。除此之外,原料粉末的性能对成形件质量也有较大影响,可通过在铝基体内添加TiC[19]、AlN[11]等增强相来提高成形件强度。王永慧等[2]利用不同成形工艺、原料粉末和热处理制备激光选区熔化AlSi10Mg试样并进行拉伸性能研究。结果表明,激光能量密度通过影响试样相对密度来影响拉伸性能,球形度较高的粉末其成形件拉伸性能较好,退火温度在270~300 ℃时,随着温度的升高,拉伸强度呈递减趋势。王小军等[20]系统研究了Al–Si合金粉末形貌对选区激光熔化成形件致密性能的影响。结果表明,粉末球形度越高、粒径分布越集中,选区激光熔化成形件相对密度越高、缺陷越少,性能越好。

    选区激光熔化成形用复合粉体制备方法主要包括高能球磨法[21]、喷雾造粒法[22]和等离子球化法(plasma spheroidization,PS)[23]等。其中,高能球磨法适合制备多种金属、陶瓷及其复合材料粉末,工艺简单、成本低,但存在粉末利用率低、易氧化、流动性不高等缺点。等离子球化法以高温等离子为热源,特别适合制备难熔合金和金属陶瓷复合粉体,制备的粉体球形度高,流动性能优异,但成本高、得粉率一般。为了获得高性能的选区激光熔化成形用铝基粉体,本文以AlSi10Mg粉和TiB2粉为原料,以高能球磨法结合等离子球化工艺制备了TiB2/AlSi10Mg复合粉末,并对其形貌、物相组成、粒径分布和激光吸收率等进行表征与分析。

    实验所用原料为长沙天久金属材料有限公司生产的气雾化AlSi10Mg粉(粒度45~105 μm)和秦皇岛一诺高新材料开发有限公司生产的高纯TiB2粉(粒度5~8 μm、纯度99.9%),两种粉末的形貌如图1所示。由图1可知,AlSi10Mg粉大部分为类球形,表面较光滑,其上黏附着大量的卫星球,具有较好的流动性;TiB2粉呈多棱角结构,粒径小、易团聚、流动性差。

    图  1  气雾化AlSi10Mg粉和高纯TiB2粉形貌:(a)AlSi10Mg;(b)TiB2
    Figure  1.  Morphologies of the raw powders prepared by gas atomization: (a) AlSi10Mg; (b) TiB2

    球磨设备为KEQ-2L型行星式球磨机,球料比5:1,球磨速度200 r·min−1,氩气保护。首先将AlSi10Mg粉末球磨1 h,主要目的是为了提高后续球磨过程中与TiB2增强相的粘附效果;然后将TiB2粉和预磨好的AlSi10Mg粉按质量比为1:9的比例在相同条件下球磨4 h,得到TiB2/Alsi10Mg复合粉。用Teknano-40.SY165型等离子球化设备对球磨后的TiB2/AlSi10Mg复合粉进行球化处理,具体球化工艺见表1。为进一步提高粉体的流动性,球化后的粉体需经清洗干燥,最终得到的粉体即为球化TiB2/AlSi10Mg复合粉。

    表  1  等离子体球化工艺参数
    Table  1.  Process parameters of the plasma spheroidization
    功率 / kW送粉器转速 / (r·min−1)粉体流速 / (g·min−1)鞘气(Ar/H2)/ (L·min−1)中心气Ar / (L·min−1)载气Ar / (L·min−1)
    30152055/15153
    下载: 导出CSV 
    | 显示表格

    利用Nano 430扫描电镜(scanning electron microscope,SEM)、FEI Titan themis 200场发射透射电镜(transmission electron microscope,TEM)和Philips X'Pert Pro M型X射线衍射仪(X-ray diffraction,XRD)分析粉末形貌、微观组织结构和物相组成。通过Mastersizer 2000激光粒度分布仪对TiB2/AlSi10Mg复合粉等离子球化前后的粒度分布进行表征。采用漫反射光谱测定法和Lambda 950紫外可见光分光光度计(UV-Vis)测量粉末的激光吸收率。

    图2为TiB2/AlSi10Mg复合粉等离子球化前后的扫描电子显微形貌。由图2(a)和图2(b)可知,球化前的TiB2/AlSi10Mg复合粉大部分呈不规则形态,颗粒表面弥散分布着一些片状颗粒物,此外,原始铝合金粉中存在的卫星球颗粒大部分都消失不见。在球磨过程中,待磨粉末与磨球之间发生剧烈的碰撞[23],铝合金表面粘附的卫星球被撞击并脱落下来;于此同时,高韧性的铝合金粉体本身在碰撞过程中不断地发生形变强化,细小的铝合金粉体颗粒变形到一定程度后韧性大幅度降低、强度迅速增大,随后跟脆性TiB2颗粒一起被挤压进颗粒较大的铝合金表面。对等离子球化后的TiB2/AlSi10Mg复合粉体而言,其形貌较球化前变化较大,不规则扁平状颗粒大幅度减少,大量颗粒呈现球形,颗粒表面附着部分纳米级颗粒,这些纳米颗粒可能是由部分物质气化后重新凝结形成的。由图2可知,经等离子球化工艺处理后,粉末的球形度增加,粉末流动性能增大,为选区激光熔化成形件质量的提升奠定了基础。

    图  2  TiB2/AlSi10Mg复合粉末等离子球化前后微观形貌:(a)、(b)球化前;(c)、(d)球化后
    Figure  2.  SEM images of the TiB2/AlSi10Mg composite powders before and after plasma spheroidization: (a), (b) before spheroidization; (c), (d) after spheroidization

    图3为球化TiB2/AlSi10Mg复合粉截面形貌及单个粉体的主要元素面扫描分布图。由图3可见,复合粉末内部结构致密,未发现气孔、裂纹等缺陷。结合元素分布图可知,Ti元素以近似环状形态分布于粉末截面的外围,内部并没有出现Ti元素。该结果表明,球磨过程中TiB2颗粒仅被嵌入AlSi10Mg表面,并没有被挤压进入其内部。

    图  3  球化TiB2/AlSi10Mg复合粉截面形貌(a)及单个粉末截面能谱分析(b)
    Figure  3.  Cross-section morphology of the plasma spheroidization powders (a) and the energy spectrum analysis of the single powder (b)

    等离子球化技术的特点是非球形粉体在高温等离子体矩中快速熔融形成熔体,随后在高速气流作用下迅速冷却,因表面张力作用最终获得球形粉体。AlSi10Mg与TiB2的熔点相差很大,在TiB2熔化之前,AlSi10Mg已熔融形成熔体。图3的能谱分析结果表明,TiB2未能进入AlSi10Mg粉末内部,这种表层为TiB2,内部为AlSi10Mg的类核壳结构的形成,可能与AlSi10Mg熔体产生的表面张力有关。在球化过程中,整体环境为气相环境,经高温等离子体作用,低熔点的AlSi10Mg完全熔化,为液相环境;对TiB2粒子而言,图3中Ti元素能谱结果表明其未熔化或仅表面部分熔化,简化为固相,与液态AlSi10Mg接触,即TiB2与AlSi10Mg的界面接触可视作固液界面润湿过程。其环境及TiB2粒子的受力分析如图4所示,其中TiB2受重力(G)作用欲渗入AlSi10Mg熔体内,而AlSi10Mg与TiB2润湿性较差,因此产生粘滞阻力(f),加上熔融液相为了保持最小的表面自由能,产生的表面张力同样也会阻碍TiB2粒子进入AlSi10Mg熔体内部,此外,等离子球化过程持续时间极短,TiB2粒子难以渗入到AlSi10Mg熔体内部。因此,等离子体球化处理前后TiB2/AlSi10Mg粉体的结构状态未发生明显改变。

    图  4  等离子球化过程中TiB2与AlSi10Mg界面受力分析
    Figure  4.  Interface load analysis between the TiB2 and AlSi10Mg powders during plasma spheroidization

    图5为AlSi10Mg粉和球化TiB2/AlSi10Mg复合粉X射线衍射图谱。由图5可知,AlSi10Mg主要由α-Al与Si相组成。与AlSi10Mg相比,TiB2的添加并没有导致新物相的生成。图6(a)是球化TiB2/AlSi10Mg复合粉的明场像(bright field,BF),图6(b)~6(d)为球化TiB2/AlSi10Mg复合粉能量色散X射线光谱(energy dispersive X-ray spectroscopy,EDX)面扫描元素分布图。由图6(b)和图6(d)可见,Ti元素呈正六边形结构,与TiB2结构一致,此外部分Si元素呈聚集态。结合X射线衍射图谱可知,TiB2/AlSi10Mg复合粉主要由α-Al、局部聚集的Si纳米颗粒和亚微米级TiB2(六方晶系)颗粒构成。

    图  5  AlSi10Mg和等离子球化TiB2/AlSi10Mg复合粉X射线衍射图谱
    Figure  5.  XRD patterns of the AlSi10Mg and plasma spheroidization TiB2/AlSi10Mg composite powders
    图  6  等离子球化TiB2/AlSi10Mg复合粉末明场像(a)及面扫元素分布(b)~(d)
    Figure  6.  BF image (a) and the corresponding EDX analysis (b)~(d) of the plasma spheroidization TiB2/AlSi10Mg composite

    图7为TiB2/AlSi10Mg复合粉的高分辨率的透射电镜(high resolution transmission electron microscope,HRTEM)图、快速傅里叶变换(fast Fourier transform FFT)图以及相应的快速傅里叶逆变换(inverse fast Fourier transform,IFFT)图。由图7可知,复合粉体内有新相Al3Ti生成,该相与Al之间为半共格界面。这意味着,在球磨–球化过程中,TiB2与Al之间发生了化学反应生成Al3Ti相,获得冶金结合界面,提高了界面结合强度。当Al熔体中存在Ti和B原子时,可能出现Ti+2B+4Al=Al3Ti+AlB2反应[24],Al和TiB2发生化学反应生成Al3Ti相也可见于其他报道[22]。不过,Al3Ti相在熔体中并不稳定[25],加之球化过程时间短,生成的Al3Ti数量较少,达不到X射线衍射仪检测最低标准,因此在X射线衍射结果中未出现该物相的衍射峰。

    图  7  球化TiB2/AlSi10Mg复合粉界面图:(a)高分辨率透射电镜及快速傅里叶变换图;(b)~(d)相应的快速傅里叶逆变换图
    Figure  7.  Interfacial microstructure of the plasma spheroidization TiB2/AlSi10Mg composite powders: (a) HRTEM and FFT images; (b)~(d) the corresponding IFFT images

    在选区激光熔化成形过程中,需要将热量从表层向底部传递。传递效率除了与粉体本身的热导率有关外,在给定层厚情况下,还受到粉末结构和尺寸影响。Alfaify等[26]研究发现,粉末粒径过大,粉末间隙增加,热传递效果降低,使得底部粉末由于能量不足而不能充分熔化,出现孔隙等缺陷;随着粉末粒径减小,粉末堆积相对密度增加,导热效果更好,可获得致密且质量更高的打印件。不过,当粒径减小到一定程度时,粉体团聚倾向加大,流动性能变差,导致打印质量下降甚至迫使打印停止。因此,保证粉体恰当的粒径分布状态具有重要意义。

    选区激光熔化成形用粉末最佳粒径分布为15~53 μm。由图8可知,气雾化AlSi10Mg合金粉末的平均粒径(D50)为31.30 μm,粒径分布符合选区激光熔化要求。经过球磨和等离子球化工艺制备的TiB2/AlSi10Mg复合粉末粒径分布状态与AlSi10Mg近似,平均粒径略有减小,同样符合选区激光熔化要求。

    图  8  AlSi10Mg和球化TiB2/AlSi10Mg粉末粒径分布:(a) AlSi10Mg;(b) TiB2/AlSi10Mg
    Figure  8.  Particle size distribution of the AlSi10Mg and TiB2/AlSi10Mg powders: (a) AlSi10Mg; (b) TiB2/AlSi10Mg

    激光吸收是材料和激光相互作用的结果,激光以光波的形式辐射到材料表面,一部分光波被材料内部的自由电子反射,剩下的则被材料内部的振子吸收。因此,影响材料激光吸收率的主要因素包括波长、材料本身、材料表面状态和温度等[27]。低激光吸收率是铝合金材料的本征性质。对AlSi10Mg而言,选区激光熔化成形过程中大部分能量都被粉体表面反射,少部分被吸收,整体能量利用率低,成形质量差。图9为不同粉末的激光吸收率图。由图9可见,AlSi10Mg粉末的激光吸收率为23.2%,经TiB2增强后,球化TiB2/AlSi10Mg复合粉的激光吸收率可提高至42.1%,这是因为添加的TiB2具有更高的激光吸收率,经球磨、球化处理后,TiB2包覆于AlSi10Mg表面,提升了粉体的激光吸收率。

    图  9  不同粉末激光吸收率
    Figure  9.  Laser absorptivity of the TiB2, AlSi10Mg and TiB2/AlSi10Mg powders

    (1)采用高能球磨结合等离子球化复合工艺制备的TiB2/AlSi10Mg粉体具有高的球形度,粒径分布均匀。此外,少量的TiB2与Al之间发生了化学反应生成Al3Ti相,获得冶金结合界面,提高了界面结合强度。

    (3)球化后的TiB2/AlSi10Mg复合粉体具有TiB2包覆AlSi10Mg的核壳结构,改善了AlSi10Mg合金粉的激光吸收率,激光吸收率由23.2%(AlSi10Mg)提高至42.1%(TiB2/AlSi10Mg)。

  • 图  1   气雾化AlSi10Mg粉和高纯TiB2粉形貌:(a)AlSi10Mg;(b)TiB2

    Figure  1.   Morphologies of the raw powders prepared by gas atomization: (a) AlSi10Mg; (b) TiB2

    图  2   TiB2/AlSi10Mg复合粉末等离子球化前后微观形貌:(a)、(b)球化前;(c)、(d)球化后

    Figure  2.   SEM images of the TiB2/AlSi10Mg composite powders before and after plasma spheroidization: (a), (b) before spheroidization; (c), (d) after spheroidization

    图  3   球化TiB2/AlSi10Mg复合粉截面形貌(a)及单个粉末截面能谱分析(b)

    Figure  3.   Cross-section morphology of the plasma spheroidization powders (a) and the energy spectrum analysis of the single powder (b)

    图  4   等离子球化过程中TiB2与AlSi10Mg界面受力分析

    Figure  4.   Interface load analysis between the TiB2 and AlSi10Mg powders during plasma spheroidization

    图  5   AlSi10Mg和等离子球化TiB2/AlSi10Mg复合粉X射线衍射图谱

    Figure  5.   XRD patterns of the AlSi10Mg and plasma spheroidization TiB2/AlSi10Mg composite powders

    图  6   等离子球化TiB2/AlSi10Mg复合粉末明场像(a)及面扫元素分布(b)~(d)

    Figure  6.   BF image (a) and the corresponding EDX analysis (b)~(d) of the plasma spheroidization TiB2/AlSi10Mg composite

    图  7   球化TiB2/AlSi10Mg复合粉界面图:(a)高分辨率透射电镜及快速傅里叶变换图;(b)~(d)相应的快速傅里叶逆变换图

    Figure  7.   Interfacial microstructure of the plasma spheroidization TiB2/AlSi10Mg composite powders: (a) HRTEM and FFT images; (b)~(d) the corresponding IFFT images

    图  8   AlSi10Mg和球化TiB2/AlSi10Mg粉末粒径分布:(a) AlSi10Mg;(b) TiB2/AlSi10Mg

    Figure  8.   Particle size distribution of the AlSi10Mg and TiB2/AlSi10Mg powders: (a) AlSi10Mg; (b) TiB2/AlSi10Mg

    图  9   不同粉末激光吸收率

    Figure  9.   Laser absorptivity of the TiB2, AlSi10Mg and TiB2/AlSi10Mg powders

    表  1   等离子体球化工艺参数

    Table  1   Process parameters of the plasma spheroidization

    功率 / kW送粉器转速 / (r·min−1)粉体流速 / (g·min−1)鞘气(Ar/H2)/ (L·min−1)中心气Ar / (L·min−1)载气Ar / (L·min−1)
    30152055/15153
    下载: 导出CSV
  • [1]

    Pandey U, Purohit R, Agarwal P, et al. Effect of TiC particles on the mechanical properties of aluminium alloy metal matrix composites (MMCs). Mater Today, 2017, 4: 5452 DOI: 10.1016/j.matpr.2017.05.057

    [2] 王永慧, 胡强, 张金辉, 等. 激光选区熔化3D打印AlSi10Mg拉伸性能影响因素. 粉末冶金技术, 2022, 40(2): 152

    Wang Y H, Hu Q, Zhang J H, et al. Influencing factors on the tensile properties of selective laser melting 3D printing AlSi10Mg. Powder Metall Technol, 2022, 40(2): 152

    [3]

    Balcı Ö, Ağaoğulları D, Gökçe H, et al. Influence of TiB2 particle size on the microstructure and properties of Al matrix composites prepared via mechanical alloying and pressureless sintering. J Alloys Compd, 2014, 586: S78 DOI: 10.1016/j.jallcom.2013.03.007

    [4]

    Wei K W, Wang Z M, Zeng X Y. Preliminary investigation on selective laser melting of Ti–5Al–2.5Sn α-Ti alloy: From single tracks to bulk 3D components. J Mater Process Technol, 2017, 244: 73

    [5]

    Li H, Ramezani M, Chen Z, et al. Effects of process parameters on temperature and stress distributions during selective laser melting of Ti–6Al–4V. Trans Indian Inst Met, 2019, 72: 3201 DOI: 10.1007/s12666-019-01785-y

    [6]

    Sun Y, Bailey R, Moroz A. Surface finish and properties enhancement of selective laser melted 316L stainless steel by surface mechanical attrition treatment. Surface Coat Technol, 2019, 378: 124993 DOI: 10.1016/j.surfcoat.2019.124993

    [7]

    Huang M J, Zhang Z X, Chen P. Effect of selective laser melting process parameters on microstructure and mechanical properties of 316L stainless steel helical micro-diameter spring. Int J Adv Manuf Technol, 2019, 104: 2117 DOI: 10.1007/s00170-019-03928-3

    [8]

    Salman O O, Brenne F, Niendorf T, et al. Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting. J Manuf Proc, 2019, 45: 255 DOI: 10.1016/j.jmapro.2019.07.010

    [9] 吴灵芝, 温耀杰, 张百成, 等. 选区激光熔化铝合金制备研究现状. 粉末冶金技术, 2021, 39(6): 549 DOI: 10.19591/j.cnki.cn11-1974/tf.2020040004

    Wu L Z, Wen Y J, Zhang B C, et al. Research status of selective laser melting aluminum alloys. Powder Metall Technology, 2021, 39(6): 549 DOI: 10.19591/j.cnki.cn11-1974/tf.2020040004

    [10]

    Sun S Y, Liu P, Hu J Y, et al. Effect of solid solution plus double aging on microstructural characterization of 7075 Al alloys fabricated by selective laser melting (SLM). Opt Laser Technol, 2019, 114: 158 DOI: 10.1016/j.optlastec.2019.02.006

    [11]

    Dai D H, Gu D D, Xia M J, et al. Melt spreading behavior, microstructure evolution and wear resistance of selective laser melting additive manufactured AlN/AlSi10Mg nanocomposite. Surf Coat Technol, 2018, 349: 279 DOI: 10.1016/j.surfcoat.2018.05.072

    [12]

    Xiong Z H, Liu S L, Li S F, et al. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. Mater Sci Eng:A, 2019, 740-741: 148 DOI: 10.1016/j.msea.2018.10.083

    [13]

    Gu X H, Zhang J X, Fan X L, et al. Abnormal corrosion behavior of selective laser melted AlSi10Mg alloy induced by heat treatment at 300 ℃. J Alloys Compd, 2019, 803: 314 DOI: 10.1016/j.jallcom.2019.06.274

    [14]

    Yu T Y, Hyer H, Sohn Y, et al. Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Mater Des, 2019, 182: 108062 DOI: 10.1016/j.matdes.2019.108062

    [15]

    Teng X, Zhang G X, Zhao Y G, et al. Study on magnetic abrasive finishing of AlSi10Mg alloy prepared by selective laser melting. Int J Adv Manuf Technol, 2019, 105: 2513 DOI: 10.1007/s00170-019-04485-5

    [16]

    Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol, 2019, 35: 270 DOI: 10.1016/j.jmst.2018.09.004

    [17]

    Aboulkhair N T, Maskery I, Tuck C, et al. On the formation of AlSi10Mg single tracks and layers in selective laser melting: microstructure and nano-mechanical properties. J Mater Process Technol, 2016, 230: 88 DOI: 10.1016/j.jmatprotec.2015.11.016

    [18]

    Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng: A, 2014, 590: 153 DOI: 10.1016/j.msea.2013.10.023

    [19]

    Yuan P P, Gu D D. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments. J Phys D: Appl Phys, 2015, 48: 0353033

    [20] 王小军, 王修春, 伊希斌, 等. 粉体特征对选区激光熔化Al–Si合金成型性能的影响. 山东科学, 2016, 29(2): 30 DOI: 10.3976/j.issn.1002-4026.2016.02.007

    Wang X J, Wang X C, Yi X B, et al. Impact of powder characteristics on formation properties of selective laser melted Al–Si alloy. Shandong Sci, 2016, 29(2): 30 DOI: 10.3976/j.issn.1002-4026.2016.02.007

    [21] 梁加淼, 王利民, 何卫, 等. 球磨时间对纳米晶Al–7Si–0.3Mg合金粉末微观组织及硬度的影响. 粉末冶金技术, 2019, 37(5): 373

    Liang J M, Wang L M, He W, et al. Effect of milling time on microstructures and hardness of nanocrystalline Al–7Si–0.3Mg alloy powders. Powder Metall Technol, 2019, 37(5): 373

    [22] 邹柯, 邓春明, 刘敏, 等. TiB2–SiC粉末喷雾造粒及其等离子喷涂沉积机理研究. 稀有金属材料与工程, 2019, 48(1): 213

    Zou K, Deng C M, Liu M, et al. Research spray granulation and plasma spraying deposition mechanism of TiB2–TiC powders. Rare Met Mater Eng, 2019, 48(1): 213

    [23]

    Zou Y M, Wu Y S, Wang J Z, et al. Preparation, mechanical properties and cyclic oxidation behavior of the nanostructured NiCrCoAlY–TiB2 coating. Ceram Int, 2018, 44(16): 19362 DOI: 10.1016/j.ceramint.2018.07.165

    [24]

    Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater, 2017, 129: 183 DOI: 10.1016/j.actamat.2017.02.062

    [25]

    Kumar N, Gautam G, Gautam R K, et al. Synthesis and characterization of TiB2 reinforced aluminium matrix composites: a review. J Inst Eng (India): Series D, 2016, 97: 233 DOI: 10.1007/s40033-015-0091-7

    [26]

    Alfaify A Y, Hughes J, Ridgway K. Critical evaluation of the pulsed selective laser melting process when fabricating Ti64 parts using a range of particle size distributions. Add Manuf, 2018, 19: 197

    [27]

    Rohit T, Kurian A, Senthilkumaran K, et al. Studies on absorptivity and marangoni flow during laser sintering. Adv Mater Res, 2012, 622-623: 531 DOI: 10.4028/www.scientific.net/AMR.622-623.531

  • 期刊类型引用(1)

    1. 张大俊,宋黎明,李恒,邢峰. 激光功率对PLC控制的SLM成形SiC增强铝基复合材料组织与性能的影响. 精密成形工程. 2024(06): 92-99 . 百度学术

    其他类型引用(0)

图(9)  /  表(1)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  33
  • PDF下载量:  37
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-05-19
  • 录用日期:  2020-05-19
  • 网络出版日期:  2023-06-01
  • 刊出日期:  2023-06-27

目录

/

返回文章
返回