高级检索

选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能

张亚民, 吴姚莎, 杨均保, 曾思惠

张亚民, 吴姚莎, 杨均保, 曾思惠. 选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能[J]. 粉末冶金技术, 2023, 41(3): 234-240. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050012
引用本文: 张亚民, 吴姚莎, 杨均保, 曾思惠. 选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能[J]. 粉末冶金技术, 2023, 41(3): 234-240. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050012
ZHANG Yamin, WU Yaosha, YANG Junbao, ZENG Sihui. Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(3): 234-240. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050012
Citation: ZHANG Yamin, WU Yaosha, YANG Junbao, ZENG Sihui. Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(3): 234-240. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050012

选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能

基金项目: 广东省普通高校重点领域专项项目(2022ZDZX3085);广东省普通高校特色创新项目(2020KTSCX323);中山市科技计划项目(2021B2017,2021SYF08);中山火炬职业技术学院校级科研项目(2022BS03,2021CXYZD02)
详细信息
    通讯作者:

    吴姚莎: E-mail: 547656588@qq.com

  • 中图分类号: TG142.7

Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting

More Information
  • 摘要:

    以气雾化AlSi10Mg粉和高纯TiB2粉为原料,采用高能球磨和等离子球化技术制备选区激光熔化用TiB2/AlSi10Mg复合粉体,使用X射线衍射仪、扫描电子显微镜、透射电子显微镜、激光粒度仪和紫外可见光分光光度计等对等离子球化前后TiB2/AlSi10Mg复合粉体组织结构和性能进行表征。结果表明:经等离子球化后的TiB2/AlSi10Mg复合粉体具有优异的球形度,粒径分布均匀。此外,部分TiB2与Al之间发生了化学反应生成Al3Ti相,获得冶金结合界面,提高了界面结合强度。该复合粉体具有近似于TiB2包覆AlSi10Mg的核壳结构,改善了铝合金粉末的激光吸收率,由23.2%(AlSi10Mg)增加至42.1%(TiB2/AlSi10Mg)。

    Abstract:

    TiB2/AlSi10Mg composite powders used for selective laser melting were prepared by high-energy ball milling and plasma spheroidization, using the AlSi10Mg powders and high purity TiB2 powders as the raw materials prepared by gas atomization. The microstructure and properties of TiB2/AlSi10Mg composite powders before and after plasma spheroidization were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), laser particle size analyzer, and UV-visible spectrophotometer. The results show that the plasma spheroidization TiB2/AlSi10Mg composite powders have the excellent sphericity and the uniform particle size distribution. Moreover, the chemical reactions between TiB2 and Al may form the Al3Ti phases, which can obtain the metallurgical bonding interface and improve the bonding strength. The core-shell structure of the composite powders is similar to that of TiB2 coated with AlSi10Mg. The laser absorption rate of the powders is improved from 23.2% (AlSi10Mg) to 42.1% (TiB2/AlSi10Mg).

  • 钻夹头是电动工具行业及机床行业的重要配件,被广泛应用于手电钻及机床上。钻夹头与钻具相连,是用来夹持柄类工具的附件。随着机械加工业的发展,对高精密自紧钻夹头的需求越来越旺盛,这就要求对钻夹头的结构进行优化。丝母是钻夹头中的重要零件,由于其精度高、结构复杂,因此常采用粉末冶金工艺制备[1]。目前,国产粉末冶金丝母已经达到了国际先进水平。粉末冶金丝母适用于高精密自紧钻夹头,具有体积小、结构复杂、精度高等特点,它可以提高高精密自紧钻夹头的精度,并且可以降低成本。因为这类丝母使用批量大,因此要求少无加工[2]

    可通过降低细长模冲高度和提高模具配合间隙精度来保证粉末冶金高精密自紧钻夹头丝母的形状和精度,丝母生产过程的顺畅进行取决于压制模具设计的合理性、压制模具的精度和生产工艺的可执行性[34]。通过研究粉末冶金高精密自紧钻夹头丝母零件设计图纸,对压制模具进行结构分析,选取压制模具强度高、分形结构合理的开模方式。从压制模具的材料选用、压制模具的分形结构(多台阶零件压制模具分冲、模具台阶结构)、压制模具的配合间隙及模具尺寸(影响模具使用寿命)等方面对压制模具进行优化,使压制模具具有高使用寿命,生产的高精密自紧钻夹头丝母产品达到设计要求,减少后序的机械加工。

    图1为粉末冶金高精密自紧钻夹头丝母产品简图,图2为粉末冶金高精密自紧钻夹头丝母产品造型图。粉末冶金丝母的生产工艺流程包括压制成形、烧结硬化、精整、成品包装等[5]。根据图1图2可知,产品为加工毛坯,丝母成品密度要求7.0 g·cm−3以上,采用粉末冶金D39为原材料,烧结后硬度要求为HV 300以上,无后序热处理[6]

    图  1  粉末冶金高精密自紧钻夹头丝母产品示意图(单位:mm)
    Figure  1.  Schematic diagram of the powder metallurgy nuts for the high precision self-tightening drill collets (unit: mm)
    图  2  粉末冶金高精密自紧钻夹头丝母产品造型图
    Figure  2.  Product model diagram of the powder metallurgy nuts for the high precision self-tightening drill collets

    粉末成形压机和模架结构选用如下,先用Creo3.0三维造型软件建模,使用软件的查询功能,计算出丝母产品轴向投影面积为5.2 cm2,压制毛坯质量为40 g。根据经验计算,计算出丝母压制成形压力为33.8 t;丝母产品外形有三个台阶,内孔有一个台阶,根据过往模具设计经验和公司现有粉末压机的情况,选取50 t上二下三模架粉末机械压机。

    粉末冶金高精密自紧钻夹头丝母模具设计的工艺参数主要包括D39预合金铁粉松装密度、压坯回弹率、烧结收缩率、精整余量和回弹量,这些工艺参数可直接影响压制模具设计的准确性[78]。D39预合金铁粉为吉凯恩(霸州)金属粉末有限公司提供的成品粉材,松装密度为3.0 g·cm−3;利用工厂现有产品和相似模具进行实际压制和烧结,采用测量产品尺寸变化量的方法获得其他压制模具设计参数,以供丝母模具设计使用,保证压制模具尺寸设计的一次性成功率[3]

    50 t上二下三模架粉末机械压机各部位零件说明和功能如下:中模具有限位功能,上外板为浮动板,上二板为固定板,下一板为固定板,下二板为浮动板,下三板为浮动板,中心缸具有上、下动作功能。

    图3为压制模具结构设计分析图,其中1表面为丝母产品上面,2表面为丝母产品最大直径ϕ34 mm下台阶面,3表面为丝母产品5个异形爪的上表面,4表面为丝母产品5个异形爪的下表面,5表面为丝母产品内台直径上表面,6表面为丝母产品内孔直径面(ϕ20 mm)。根据丝母结构、压制压机模架技术参数和装模工艺,取图3中1面为压制上面,只需要一个压制上冲即可。50 t上二下三模架粉末机械压机具有中模限位功能,同时为了简化模具,图3中2面可以与丝母产品最大直径(ϕ34 mm)一起设计作为中模模具,即压制阴模,中模模具做成台阶形式。正常设计时,为了丝母压制坯脱模方便,4面处压制模具应设计在下一板上(固定板),设计为压制下一冲,3面处压制模具设计在下二板上(浮动板),设计为压制下二冲。为简化模具,内孔直径6与5面设计在一起做成台阶芯棒,即压制芯棒,设计在下三板(浮动板)上,保证压制成形时尺寸稳定。

    图  3  压制模具结构设计分析图
    Figure  3.  Structural design and analysis diagram of the pressing die

    压制阴模高度要满足装粉高度和模冲定位高度,包括丝母装粉高度、下模冲定位高度(一般为15~20 mm)、压机少装粉高度(一般为3~6 mm)等。芯棒长度由装粉高度、芯棒与下模冲配合高度和根据压制方式、连接方式需要的高度决定,芯棒长度尽量设计短一些,这样可以提高加工精度。丝母压制下一模冲高度、压制下二模冲高度由配合定位高度、压机脱模行程、模冲垫块和连接所需要的高度组成。压制模具细节分析见图4。为防止脱模时阴模碰到模冲边接座,在压制阴模下表面与压制下一冲台阶上面(图5(c)中A点处)之间要有约10 mm的间隙。如模冲过于细长,强度不足,还应考虑其他方式增强模冲强度或降低模冲高度[4]

    图  4  丝母压制模具细节分析(单位:mm)
    Figure  4.  Detail analysis of the nut pressing die (unit: mm)
    图  5  优化后的压制模具:(a)压制阴模;(b)压制上冲;(c)压制下一冲;(d)压制下二冲;(e)压制芯棒
    Figure  5.  Optimized pressing die: (a) pressing female die; (b) pressing the upper punching rod; (c) first lower punch; (d) second lower punch; (e) pressing mandrel

    图1所示,丝母产品有一个1.2 mm宽的最小槽在设计中需要考虑。根据丝母压制填充高度,预估压制阴模高度为50 mm,压制下一冲高度90 mm(冲分形部分高度60 mm),压制下二冲高度170 mm(冲分形部分高度100 mm)。如果这样设计,就会有一个宽度为1.2 mm、高度为100 mm的模冲,很明显压制下二冲强度严重不足,模具会产生严重变形,将无法使用。刚开始采取的解决措施是将压制下一冲制做成阶梯结构,此种方式可以使压制下二冲高度降低,将压制下二冲分形部分高度降至85 mm,压制下二冲1.2 mm处强度有所提高,但依然不能满足生产使用。更换设计思路,取图3中1面为压制上面,一个压制上冲;2面可以与丝母产品最大直径设计在一起作为中模模具,即压制阴模做成台阶形式;3面处压制模具应设计在下二板上(浮动板),中间过桥,穿过固定板层,设计为压制下一冲;4面处压制模具应设计在下一板上(固定板),设计为压制下二冲;内孔直径6面与5面设计在一起,做成台阶芯棒,即压制芯棒,设计在下三板(浮动板)上。这样设计各模冲位置,同时结合阶梯结构,可以使宽度为1.2 mm处的冲分形处高度降低至60 mm,经过检验为最优设计方案。优化后的压制模具设计方案见图5

    图5所示,根据丝母压制模具各部件不同的结构特点,选用不同的材料制备模具。压制阴模内孔为小台阶结构,无特殊形状,考虑到产品批量大,因此选用YG15硬质合金材料,因为YG15硬质合金具有硬度高、耐磨性好等特点。压制芯棒顶部有个小台阶,内孔为螺丝连接孔,无异形,因此选用YG8硬质合金材料,YG8硬质合金材料具有强度高、使用寿命长等特点。压制下一冲结构复杂,且有较细长结构,压制下二冲长度长,结构复杂,因此,压制下一冲和下二冲需要选用韧性高、耐磨性好的冷作模具钢,选用材料SLD合金工具钢,热处理硬度HRC 57~59,模具热处理后需要3次回火。压制上冲形状不复杂,选用DC53材料,热处理硬度HRC 57~59[8]

    压制阴模与压制芯棒的成形面、配合表面的表面粗糙度要求为Ra>0.4,这样可以减少模具之间的摩擦,有利于丝母产品脱模。压制下一冲和压制下二冲配合表面粗糙度要求Ra>0.4,细长杆之间配合摩擦力小,减小压制时的摩擦,提高模具使用寿命[9]。压制模具之间的配合间隙选择0.010~0.015 mm,模具的形状误差(直线度、圆度、圆柱度等)要小于0.005 mm,位置公差(同轴度、垂直度、平行度等)要小于0.02 mm。

    在50 t上二下三模架粉末机械压机上安装经过优化的压制模具,进行调试压制。调整丝母压制密度为7.06 g·cm−3,试制压制500件丝母。丝母压制完成后,压制模具完好,压制的丝母经烧结后符合产品图纸设计要求,压制的成品见图6。试制取得成功后,公司进行批量生产,批量生产丝母3万件,量产出来的丝母,经过检测中心和客户的检测,产品完全达到产品图纸设计要求,而且压制模具无损坏,模具的使用寿命也达到了预期的时间。粉末冶金丝母安装在高精密自紧钻夹头上,完全达到使用性能和使用寿命要求。图7为安装了粉末冶金丝母的高精密自紧钻夹头。

    图  6  试制生产的高精密自紧钻夹头丝母成品
    Figure  6.  Trial production of the high precision self-tightening drill chuck nuts
    图  7  装有丝母的高精密自紧钻夹头
    Figure  7.  High precision self-tightening drill chuck with nuts

    通过对粉末冶金丝母的产品设计、产品结构、生产工艺进行分析,从压制模具的材料选择、压机模架的优化应用(中间过桥,穿过固定板层)、模具结构的调整(变换压制下一冲、压制下二冲位置,阶梯结构)、缩短压制模具尺寸、增加模冲强度和利用以往设计经验等方面,对丝母产品压制模具进行优化,增加压制模具使用寿命,生产出来的高精密自紧钻夹头丝母完全达到了产品设计要求。

  • 图  1   气雾化AlSi10Mg粉和高纯TiB2粉形貌:(a)AlSi10Mg;(b)TiB2

    Figure  1.   Morphologies of the raw powders prepared by gas atomization: (a) AlSi10Mg; (b) TiB2

    图  2   TiB2/AlSi10Mg复合粉末等离子球化前后微观形貌:(a)、(b)球化前;(c)、(d)球化后

    Figure  2.   SEM images of the TiB2/AlSi10Mg composite powders before and after plasma spheroidization: (a), (b) before spheroidization; (c), (d) after spheroidization

    图  3   球化TiB2/AlSi10Mg复合粉截面形貌(a)及单个粉末截面能谱分析(b)

    Figure  3.   Cross-section morphology of the plasma spheroidization powders (a) and the energy spectrum analysis of the single powder (b)

    图  4   等离子球化过程中TiB2与AlSi10Mg界面受力分析

    Figure  4.   Interface load analysis between the TiB2 and AlSi10Mg powders during plasma spheroidization

    图  5   AlSi10Mg和等离子球化TiB2/AlSi10Mg复合粉X射线衍射图谱

    Figure  5.   XRD patterns of the AlSi10Mg and plasma spheroidization TiB2/AlSi10Mg composite powders

    图  6   等离子球化TiB2/AlSi10Mg复合粉末明场像(a)及面扫元素分布(b)~(d)

    Figure  6.   BF image (a) and the corresponding EDX analysis (b)~(d) of the plasma spheroidization TiB2/AlSi10Mg composite

    图  7   球化TiB2/AlSi10Mg复合粉界面图:(a)高分辨率透射电镜及快速傅里叶变换图;(b)~(d)相应的快速傅里叶逆变换图

    Figure  7.   Interfacial microstructure of the plasma spheroidization TiB2/AlSi10Mg composite powders: (a) HRTEM and FFT images; (b)~(d) the corresponding IFFT images

    图  8   AlSi10Mg和球化TiB2/AlSi10Mg粉末粒径分布:(a) AlSi10Mg;(b) TiB2/AlSi10Mg

    Figure  8.   Particle size distribution of the AlSi10Mg and TiB2/AlSi10Mg powders: (a) AlSi10Mg; (b) TiB2/AlSi10Mg

    图  9   不同粉末激光吸收率

    Figure  9.   Laser absorptivity of the TiB2, AlSi10Mg and TiB2/AlSi10Mg powders

    表  1   等离子体球化工艺参数

    Table  1   Process parameters of the plasma spheroidization

    功率 / kW送粉器转速 / (r·min−1)粉体流速 / (g·min−1)鞘气(Ar/H2)/ (L·min−1)中心气Ar / (L·min−1)载气Ar / (L·min−1)
    30152055/15153
    下载: 导出CSV
  • [1]

    Pandey U, Purohit R, Agarwal P, et al. Effect of TiC particles on the mechanical properties of aluminium alloy metal matrix composites (MMCs). Mater Today, 2017, 4: 5452 DOI: 10.1016/j.matpr.2017.05.057

    [2] 王永慧, 胡强, 张金辉, 等. 激光选区熔化3D打印AlSi10Mg拉伸性能影响因素. 粉末冶金技术, 2022, 40(2): 152

    Wang Y H, Hu Q, Zhang J H, et al. Influencing factors on the tensile properties of selective laser melting 3D printing AlSi10Mg. Powder Metall Technol, 2022, 40(2): 152

    [3]

    Balcı Ö, Ağaoğulları D, Gökçe H, et al. Influence of TiB2 particle size on the microstructure and properties of Al matrix composites prepared via mechanical alloying and pressureless sintering. J Alloys Compd, 2014, 586: S78 DOI: 10.1016/j.jallcom.2013.03.007

    [4]

    Wei K W, Wang Z M, Zeng X Y. Preliminary investigation on selective laser melting of Ti–5Al–2.5Sn α-Ti alloy: From single tracks to bulk 3D components. J Mater Process Technol, 2017, 244: 73

    [5]

    Li H, Ramezani M, Chen Z, et al. Effects of process parameters on temperature and stress distributions during selective laser melting of Ti–6Al–4V. Trans Indian Inst Met, 2019, 72: 3201 DOI: 10.1007/s12666-019-01785-y

    [6]

    Sun Y, Bailey R, Moroz A. Surface finish and properties enhancement of selective laser melted 316L stainless steel by surface mechanical attrition treatment. Surface Coat Technol, 2019, 378: 124993 DOI: 10.1016/j.surfcoat.2019.124993

    [7]

    Huang M J, Zhang Z X, Chen P. Effect of selective laser melting process parameters on microstructure and mechanical properties of 316L stainless steel helical micro-diameter spring. Int J Adv Manuf Technol, 2019, 104: 2117 DOI: 10.1007/s00170-019-03928-3

    [8]

    Salman O O, Brenne F, Niendorf T, et al. Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting. J Manuf Proc, 2019, 45: 255 DOI: 10.1016/j.jmapro.2019.07.010

    [9] 吴灵芝, 温耀杰, 张百成, 等. 选区激光熔化铝合金制备研究现状. 粉末冶金技术, 2021, 39(6): 549 DOI: 10.19591/j.cnki.cn11-1974/tf.2020040004

    Wu L Z, Wen Y J, Zhang B C, et al. Research status of selective laser melting aluminum alloys. Powder Metall Technology, 2021, 39(6): 549 DOI: 10.19591/j.cnki.cn11-1974/tf.2020040004

    [10]

    Sun S Y, Liu P, Hu J Y, et al. Effect of solid solution plus double aging on microstructural characterization of 7075 Al alloys fabricated by selective laser melting (SLM). Opt Laser Technol, 2019, 114: 158 DOI: 10.1016/j.optlastec.2019.02.006

    [11]

    Dai D H, Gu D D, Xia M J, et al. Melt spreading behavior, microstructure evolution and wear resistance of selective laser melting additive manufactured AlN/AlSi10Mg nanocomposite. Surf Coat Technol, 2018, 349: 279 DOI: 10.1016/j.surfcoat.2018.05.072

    [12]

    Xiong Z H, Liu S L, Li S F, et al. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. Mater Sci Eng:A, 2019, 740-741: 148 DOI: 10.1016/j.msea.2018.10.083

    [13]

    Gu X H, Zhang J X, Fan X L, et al. Abnormal corrosion behavior of selective laser melted AlSi10Mg alloy induced by heat treatment at 300 ℃. J Alloys Compd, 2019, 803: 314 DOI: 10.1016/j.jallcom.2019.06.274

    [14]

    Yu T Y, Hyer H, Sohn Y, et al. Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Mater Des, 2019, 182: 108062 DOI: 10.1016/j.matdes.2019.108062

    [15]

    Teng X, Zhang G X, Zhao Y G, et al. Study on magnetic abrasive finishing of AlSi10Mg alloy prepared by selective laser melting. Int J Adv Manuf Technol, 2019, 105: 2513 DOI: 10.1007/s00170-019-04485-5

    [16]

    Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol, 2019, 35: 270 DOI: 10.1016/j.jmst.2018.09.004

    [17]

    Aboulkhair N T, Maskery I, Tuck C, et al. On the formation of AlSi10Mg single tracks and layers in selective laser melting: microstructure and nano-mechanical properties. J Mater Process Technol, 2016, 230: 88 DOI: 10.1016/j.jmatprotec.2015.11.016

    [18]

    Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng: A, 2014, 590: 153 DOI: 10.1016/j.msea.2013.10.023

    [19]

    Yuan P P, Gu D D. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments. J Phys D: Appl Phys, 2015, 48: 0353033

    [20] 王小军, 王修春, 伊希斌, 等. 粉体特征对选区激光熔化Al–Si合金成型性能的影响. 山东科学, 2016, 29(2): 30 DOI: 10.3976/j.issn.1002-4026.2016.02.007

    Wang X J, Wang X C, Yi X B, et al. Impact of powder characteristics on formation properties of selective laser melted Al–Si alloy. Shandong Sci, 2016, 29(2): 30 DOI: 10.3976/j.issn.1002-4026.2016.02.007

    [21] 梁加淼, 王利民, 何卫, 等. 球磨时间对纳米晶Al–7Si–0.3Mg合金粉末微观组织及硬度的影响. 粉末冶金技术, 2019, 37(5): 373

    Liang J M, Wang L M, He W, et al. Effect of milling time on microstructures and hardness of nanocrystalline Al–7Si–0.3Mg alloy powders. Powder Metall Technol, 2019, 37(5): 373

    [22] 邹柯, 邓春明, 刘敏, 等. TiB2–SiC粉末喷雾造粒及其等离子喷涂沉积机理研究. 稀有金属材料与工程, 2019, 48(1): 213

    Zou K, Deng C M, Liu M, et al. Research spray granulation and plasma spraying deposition mechanism of TiB2–TiC powders. Rare Met Mater Eng, 2019, 48(1): 213

    [23]

    Zou Y M, Wu Y S, Wang J Z, et al. Preparation, mechanical properties and cyclic oxidation behavior of the nanostructured NiCrCoAlY–TiB2 coating. Ceram Int, 2018, 44(16): 19362 DOI: 10.1016/j.ceramint.2018.07.165

    [24]

    Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater, 2017, 129: 183 DOI: 10.1016/j.actamat.2017.02.062

    [25]

    Kumar N, Gautam G, Gautam R K, et al. Synthesis and characterization of TiB2 reinforced aluminium matrix composites: a review. J Inst Eng (India): Series D, 2016, 97: 233 DOI: 10.1007/s40033-015-0091-7

    [26]

    Alfaify A Y, Hughes J, Ridgway K. Critical evaluation of the pulsed selective laser melting process when fabricating Ti64 parts using a range of particle size distributions. Add Manuf, 2018, 19: 197

    [27]

    Rohit T, Kurian A, Senthilkumaran K, et al. Studies on absorptivity and marangoni flow during laser sintering. Adv Mater Res, 2012, 622-623: 531 DOI: 10.4028/www.scientific.net/AMR.622-623.531

  • 期刊类型引用(1)

    1. 张大俊,宋黎明,李恒,邢峰. 激光功率对PLC控制的SLM成形SiC增强铝基复合材料组织与性能的影响. 精密成形工程. 2024(06): 92-99 . 百度学术

    其他类型引用(0)

图(9)  /  表(1)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  33
  • PDF下载量:  37
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-05-19
  • 录用日期:  2020-05-19
  • 网络出版日期:  2023-06-01
  • 刊出日期:  2023-06-27

目录

/

返回文章
返回