-
摘要:
对离心粒化后高温熔渣的飞行过程建立数学模型,通过Runge-Kutta方法对建立的数学模型进行离散求解。结果表明,熔渣液滴沿x方向飞行距离与液滴直径和初始速度成正比;由于空气绕流阻力和重力作用,熔渣液滴速度先降低后增加。对熔渣液滴撞壁后过剩反弹能进行分析,获得了熔渣液滴的临界撞击速度。结果表明,临界撞击速度为区间,存在上界和下界,且上界和下界同时随直径增加而降低。对初始速度为10、12和14 m·s‒1三种粒化工况进行实验,结果表明,由于熔渣液滴从粒化盘抛出时速度小于粒化盘边缘线速度,熔渣液滴实际下降距离大于其理论值;三种工况下熔渣液滴撞击速度在临界撞击速度区间内,均未产生粘结。
Abstract:The mathematical model was established for the flight process of the molten blast furnace slag after the centrifugal graining, and the model was discretely solved by the Runge-Kutta method. The results show that, the flight distance of the slag droplets along the x direction is proportional to the diameter and the initial velocity of droplets. Due to the air flow resistance and gravity, the velocity of droplets decreases with time, and then increases slightly. Critical impact velocity of the droplets was proposed by analyzing the excess rebound energy of the slag droplets after collision with wall. The results indicate that, the critical impact velocity is an interval, and the larger the droplets, the lower the bounds. The experiments were performed with the initial droplet velocities of 10, 12, and 14 m·s‒1. The results indicate that, the actual falling distance of the slag droplets is greater than the theoretical values, because the initial velocity of the slag droplets is less than the linear velocity of the granulation plate. Meanwhile, the impact velocity of the slag droplets is between the upper and lower bound, thus no adhesion occurs.
-
Keywords:
- blast furnace slag /
- flight dynamics /
- collision /
- mathematical model
-
γ基钛铝合金具有高比强度、低密度等优点,在高温结构材料领域受到广泛关注[1–6]。但室温延展性差、高温抗氧化性能不足制约了其在高温结构领域的应用[7‒8],一般通过添加三元或四元合金元素来改善这两方面的不足。钛铝合金氧化膜为多层结构,由不同比例的氧化铝(Al2O3)和金红石(TiO2)非均匀混合物和金红石顶层所构成[9]。虽然这两种氧化物热力学稳定性相似,但Al2O3的生长速率慢于TiO2,而良好的抗氧化性取决于连续Al2O3的生成,因此,可以通过改变氧化层的特性来提高合金的抗氧化性。研究人员进行了大量合金化研究[10],比如在钛铝合金中添加Nb和Cr,虽然Nb和Cr的存在有助于促进连续致密的氧化层的形成,但也存在一些不足,固溶于基体合金中的Cr会降低基体中Al的含量,使合金的抗氧化性下降[11,12]。近年来,研究人员发现,添加微量稀土元素可以提高钛铝合金的高温抗氧化性,稀土元素的加入可以细化晶粒、净化基体、提高氧化膜的附着力,促进Al的选择性氧化[13]。Zhao等[14]研究了Y对Ti–45Al–8Nb在900 ℃高温抗氧化性能的影响,Y的添加降低了氧化膜的厚度并且有效改善了氧化膜与基体的结合力。
稀土元素对改善钛铝合金高温抗氧化性能的研究越来越多,但稀土镱(Yb)、铈(Ce)对钛铝合金高温抗氧化性能的影响和作用机制还鲜有报道。放电等离子烧结技术(spark plasma sintering,SPS)具有升温速度快、烧结时间短、烧结合金相对密度高等优点[15‒16],本文采用放电等离子烧结制备添加微量Yb、Ce元素的Ti–45Al合金,系统研究了在800 ℃时钛铝合金的高温氧化行为以及Yb、Ce元素对钛铝合金抗氧化性能的影响。
1. 实验材料及方法
实验原料为高纯钛粉、铝粉、原子数分数为0.3%的Yb2O3粉末和原子数分数为0.3%的CeO2粉末。将原料粉末在行星球磨机中进行混合球磨,球磨介质为不锈钢球,球料比为3:1,以300 r·min‒1的转速球磨6 h。对球磨得到的粉末进行放电等离子烧结,烧结温度为1100 ℃,压力为30 MPa,保压时间5 min,随炉冷却后得到所需烧结合金。将制备的合金线切割成8 mm×3 mm的圆柱形试样,根据所含元素不同,制备3种合金试样,编号为1#、2#、3#,各试样化学成分见表1。逐次用400~2000目的碳化硅水砂纸磨至光滑,使用乙醇溶液超声波清洗10 min后吹干。高温氧化实验前将所制备的合金试样放入60 ℃烘箱烘干30 min,所用坩埚在850 ℃高温电阻炉中干燥,每30 min称重一次。当坩埚的重量没有进一步变化时,将氧化样品放入坩埚中。静态高温氧化实验在高温电阻炉(KSS-1400郑州)中进行,氧化温度为 800 ℃,样品的加热和冷却速率为4 ℃·min‒1。氧化时间分别为5、10、25、50、100 h,每一氧化时间设置3个样品进行测试,以验证数据的重复性。样品取出后在空气中冷却至室温,用电子天平(精确度0.1 mg)进行称量得到氧化质量增重,进一步得到氧化动力学曲线。
表 1 实验制备试样的化学成分(原子数分数)及相对密度Table 1. Chemical compositions (atomic fraction) and relative density of the samples% 试样编号 化学成分 相对密度 1# Ti–45Al 98.2 2# Ti–45Al–0.3Yb2O3 99.5 3# Ti–45Al–0.3CeO2 93.4 使用阿基米德排水法测量合金试样的相对密度,结果见表1。采用X射线衍射仪(X-ray diffraction,XRD;D8岛津高级衍射仪)分析合金试样和氧化产物的物相组成。利用扫描电子显微镜(scanning electron microscope,SEM;Zeiss Gemini 300显微镜)观察合金试样和氧化实验后氧化层的表面及截面显微形貌。通过金相显微镜观察钛铝合金的金相组织。
2. 结果与讨论
2.1 钛铝合金氧化前的组织分析
图1为放电等离子烧结钛铝合金的X射线衍射图谱,图2为合金的显微形貌和金相组织。由图1可知,合金的主要组成相为α2-Ti3Al相和γ-TiAl相。从显微照片可以看出,3种合金的晶粒均为等轴晶,显微组织是由α2+γ片层晶团与等轴γ晶粒混合构成的双态组织。Ti–45Al–0.3Yb2O3/CeO2合金中的稀土元素弥散分布于晶界,达到细化晶粒,强化组织的效果。此外,加入稀土Yb后,合金中的孔洞明显减少,而加入稀土Ce的钛铝合金中的孔洞明显增多,这也是Ti–45Al–0.3CeO2相对密度降低的原因。
图3为放电等离子烧结钛铝合金的电子背散射衍射形貌(electron back-scattered diffraction,EBSD)及合金晶粒尺寸分布。由图3可知,加入稀土元素Yb或Ce使得合金晶粒尺寸得到细化。经统计,Ti‒45Al、Ti‒45Al‒0.3Yb2O3和Ti‒45Al‒0.3CeO2三种合金的平均晶粒尺寸分别为28.46 μm、11.35 μm、13.83 μm,显然,在Ti‒45Al中添加稀土元素,尤其是稀土元素Yb的添加,使得晶粒明显细化。
图 3 钛铝合金电子背散射衍射形貌和晶粒分布:(a)Ti‒45Al EBSD;(b)Ti‒45Al‒0.3Yb2O3 EBSD;(c)Ti‒45Al‒0.3CeO2 EBSD;(d)Ti‒45Al晶粒分布;(e)Ti‒45Al‒0.3Yb2O3晶粒分布;(f)Ti‒45Al‒0.3CeO2晶粒分布Figure 3. EBSD and grain size distribution of TiAl alloys: (a) Ti‒45Al EBSD; (b) Ti‒45Al‒0.3Yb2O3 EBSD; (c) Ti‒45Al‒0.3CeO2 EBSD; (d) Ti‒45Al grain size distribution; (e) Ti‒45Al‒0.3Yb2O3 grain size distribution; (f) Ti‒45Al‒0.3CeO2 grain size distribution2.2 氧化动力学分析
图4为Ti‒45Al、Ti‒45Al‒0.3Yb2O3和Ti‒45Al‒0.3CeO2合金在800 ℃等温氧化100 h的单位面积质量变化和氧化速率。由图4可知,在总时间为100 h的高温氧化过程中,单位面积质量变化呈现出抛物线规律,氧化速率先升高后降低。氧化初期,氧化速率较高,但在氧化时间不断增加的过程中,3种合金的氧化速率都不断降低最后慢慢平稳,这说明在100 h时,钛铝合金的氧化过程已经趋于稳态氧化。氧化时间到达100 h之后,3种合金总增重分别为14.63 g·m‒2、7.02 g·m‒2、8.19 g·m‒2。在抗氧化性能级别评定方面,Ti‒45Al达到2级抗氧化级别,Ti‒45Al‒0.3Yb2O3和Ti‒45Al‒0.3CeO2合金均达到1级完全抗氧化级别。在整个氧化过程中,Ti‒45Al‒0.3Yb2O3和Ti‒45Al‒0.3CeO2合金的质量变化始终小于Ti‒45Al合金。样品的质量变化曲线近似于抛物线规律,说明氧化反应属于扩散控制。一般认为,金属或合金的高温氧化动力学是由阳离子或阴离子通过氧化膜扩散控制的[17‒18]。抛物线定律定义如式(1)所示。
$$ \left( {{\Delta m / S}} \right)_{}^2 = {K_{\text{p}}}t + C $$ (1) 式中:Δm是样品质量变化,g;S是面积,m2;Kp是抛物线速率常数,g2·m‒4·h‒1;t是氧化时间,h;C为常数[18]。
通过质量变化的平方作为时间的函数来分析样品在800 ℃氧化时的氧化动力学,如图5所示,其中R2是拟合系数,表示统计模型与数据结果的吻合程度。R2越大表示拟合结果与数据越一致。Ti‒45Al‒0.3Yb2O3在800 ℃时的氧化速率常数Kp最低,为0.54 g2·m‒4·h‒1。
通过图4和图5观察到,钛铝合金在氧化过程中并不完全符合抛物线定律,而是在一定时间内(0~100 h)遵守抛物线定律。众所周知,抛物线定律是基于理想条件下氧化膜或氧化物/金属界面不存在缺陷的假设。事实上,在连续氧化过程中,氧化膜中可能会形成许多孔隙或裂纹,这会导致氧化动力学的偏差[19]。
2.3 氧化产物分析
图6为3种钛铝合金800 ℃高温氧化50 h后得到的氧化产物X射线衍射图谱。由图可知,Ti‒45Al‒0.3Yb2O3和Ti‒45Al‒0.3CeO2两种合金在高温氧化50 h后氧化产物相同,均为TiO2与Al2O3。图谱中并没有发现稀土衍射峰,这可能是由于稀土元素添加量较少。在800 ℃氧化50 h后,3种合金的主要氧化产物均为TiO2。
图7为3种合金在800 ℃高温下氧化100 h后的表面形貌。3种合金表面覆盖着不同尺寸的TiO2颗粒,TiO2颗粒皆具有粗晶柱状晶体的共同特征,而Al2O3颗粒为细晶且形状不规则。Ti‒45Al‒0.3Yb2O3表面形貌的特征是在较细的富Al氧化物鳞片上分布着一些特殊的小丘。图7中的高倍显微照片显示了小丘的细节,在添加稀土的条件下,由于Ti离子在Yb和Al氧化物中的溶解度有限,在丘顶形成了钛氧化物。此外,Ti‒45Al‒0.3Yb2O3表面氧化皮无明显脱落,Ti‒45Al‒0.3CeO2表面氧化皮有少量脱落,而Ti‒45Al合金等温氧化100 h后表面氧化皮发生了大面积脱落。3种氧化膜表面皆形成了TiO2型尖晶石,而Yb的添加明显抑制了氧化膜的生长,其表面氧化膜基本由突起的TiO2组成,还未形成一层完整的氧化膜。Ti‒45Al‒0.3CeO2和Ti‒45Al合金表面TiO2已经生长成为完整的一层,并且由于第二层混合氧化物疏松而发生不同程度的脱落。
为了进一步了解氧化物的结构,采用扫描电镜观察氧化试样截面形貌并进行能谱(energy disperse spectroscope,EDS)分析,结果如图8所示。由图可知,氧化皮为典型的层状结构。Ti‒45Al‒0.3Yb2O3氧化膜无明显脱落,平均厚度约为7 μm;Ti‒45Al‒0.3CeO2表面氧化膜部分脱落,厚度约为12 μm;Ti‒45Al表面氧化膜大面积脱落,脱落后氧化膜厚度约为3 μm。如图8(a)所示,氧化膜开裂脱落后只剩下部分内部混合氧化物层。氧化皮的开裂主要发生在内部混合氧化层中,从而导致外层氧化皮的脱落。添加稀土元素钛铝合金生成的氧化物比Ti‒45Al的氧化物细得多,外层密实、无裂缝,混合内层结构疏松,这可能是多孔层在冷却过程中发生氧化膜剥离的原因。在添加稀土元素的合金中,形成更连续的Al2O3层,氧化膜中不存在较厚的混合氧化层。
研究表明,钛铝合金的氧化大致可分为4个阶段:第1阶段生成TiO2;第2阶段生成Al2O3层以及富Ti层;第3阶段生成TiO2层以及富Al层;第4阶段生成Al2O3层[20]。阶段1的氧化受界面反应控制,阶段2和阶段3的氧化受离子通过氧化膜扩散控制。TiO2/Al2O3混合层的生长主要受氧气向内扩散控制,而TiO2混合层的生长主要受Ti离子向外扩散控制。本文实验材料Ti‒45Al中Ti含量比Al高,Ti活性比Al高,因此在高温氧化时会首先生成TiO2。然而,Ti‒45Al为双相组织,在合金表面Al、Ti的活性以及分布是变化的,难以形成连续大面积的TiO2氧化层。因为氧化速度比较慢,生成TiO2后导致基体一侧的氧化层富Al贫Ti现象相对较弱,最终生成了Al2O3和TiO2混合层,Ti和Al交替并互相促进地发生氧化,氧化层不断向基体方向生长。结合X射线衍射图谱可知,本文中3种合金的氧化层形成过程基本按照此4个阶段的顺序形成。
3. 结论
(1)采用放电等离子烧结制备3种TiAl合金试样,样品的相对密度最高达到99%,实现致密化。
(2)3种TiAl合金在高温空气中保温100 h的氧化动力学曲线均服从抛物线规律,在800 ℃空气中氧化100 h后,Ti‒45Al、Ti‒45Al‒0.3Yb2O3和Ti‒45Al‒0.3CeO2三种合金的质量增重分别为14.63 g·m‒2、7.02 g·m‒2、8.19 g·m‒2,稀土元素Yb或Ce的加入提高了TiAl合金在800 ℃的抗高温氧化性能。
(3)从氧化膜外表面到基体分别由TiO2层、Al2O3+TiO2混合层组成,添加Yb的钛铝合金氧化物尺寸更为细小,结构更为致密,稀土的添加促进了Al的选择性氧化,降低了氧化膜的生长速率,从而提高了TiAl合金的高温抗氧化性。
-
表 1 熔渣化学成分(质量分数)
Table 1 Chemical composition of the blast slag
% SiO2 CaO Al2O3 MgO FeO MnO TiO2 S 其他 33.92 40.15 14.50 8.17 0.33 0.30 0.50 1.03 1.10 表 2 熔渣液滴直径与临界撞击速度关系
Table 2 Relationship between the slag droplet diameter and the critical impact velocity
d / mm v* / (m·s‒1) 0.5 0.45~227.32 1.5 0.33~75.75 2.5 0.27~45.44 3.5 0.24~32.45 4.5 0.22~25.23 表 3 实验工况
Table 3 Experimental condition
序号 Dm / m D / m N / (r·min‒1) v0 / (m·s‒1) 1 2 0.25 764 10 2 2 0.25 917 12 3 2 0.25 1069 14 -
[1] Wu J J, Wang H, Zhu X, et al. Centrifugal granulation performance of liquid with various viscosities for heat recovery of blast furnace slag. Appl Therm Eng, 2015, 89: 494 DOI: 10.1016/j.applthermaleng.2015.06.031
[2] Worldsteel Association. Steel statistical yearbook [J/OL]. Worldsteel Association [2020-1]. Steel-Statistical-Yearbook-2019-concise-version. pdf (worldsteel. org)
[3] Purwanto H, Akiyama T. Hydrogen production from biogas using hot slag. Int J Hydrogen Energy, 2006, 31(4): 491 DOI: 10.1016/j.ijhydene.2005.04.021
[4] Li P, Yu Q B, Qin Q, et al. Kinetics of CO2/coal gasification in molten blast furnace slag. Ind Eng Chem Res, 2012, 51(49): 15872 DOI: 10.1021/ie301678s
[5] Pickering S J, Hay N, Roylance T F, et al. New process for dry granulation and heat recovery from molten blast-furnace slag. Ironmaking Steelmaking, 1985, 12(1): 14
[6] Kashiwaya Y, In-nami Y, Akiyama T. Mechanism of the formation of slag particles by the rotary cylinder atomization. ISIJ Int, 2010, 50(9): 1252 DOI: 10.2355/isijinternational.50.1252
[7] Akiyama T, Toshio M, Jun-Ichiro Y, et al. Feasibility study of hydrogen generator with molten slag granulation. Steel Res Int, 2004, 75(2): 122 DOI: 10.1002/srin.200405937
[8] Xie D, Washington B M, Norgate T, et al. Dry granulation of slags–turning waste into valuable products. CAMP-ISIJ, 2005, 18(4): 1088
[9] Xie D, Pan Y, Flann R, et al. Heat recovery from slag through dry granulation // 1st CSRP Annual Conference. Melbourne, 2007: 1
[10] 于庆波, 刘军祥, 窦晨曦, 等. 转杯法高炉渣粒化实验研究. 东北大学学报(自然科学版), 2009, 30(8): 1163 DOI: 10.3321/j.issn:1005-3026.2009.08.025 Yu Q B, Liu J X, Dou C X, et al. Dry granulation experiment of blast furnace slag by rotary cup atomizer. J Northeast Univ Nat Sci, 2009, 30(8): 1163 DOI: 10.3321/j.issn:1005-3026.2009.08.025
[11] 刘军祥, 于庆波, 李朋, 等. 高炉渣干法粒化试验研究. 钢铁, 2010, 45(2): 95 DOI: 10.13228/j.boyuan.issn0449-749x.2010.02.032 Liu J X, Yu Q B, Li P, et al. Experimental study on dry-granulation of molten blast furnace slag. Iron Steel, 2010, 45(2): 95 DOI: 10.13228/j.boyuan.issn0449-749x.2010.02.032
[12] Lin B, Wang H, Zhu X, et al. Crystallization properties of molten blast furnace slag at different cooling rates. Appl Therm Eng, 2016, 96: 432 DOI: 10.1016/j.applthermaleng.2015.11.075
[13] Zhu X, Ding B, Wang H, et al. Phase evolution of blast furnace slags with variation in the binary basicity in a variable cooling process. Fuel, 2018, 219: 132 DOI: 10.1016/j.fuel.2018.01.075
[14] Zhu X, Ding B, Wang H, et al. Numerical study on solidification behaviors of a molten slag droplet in the centrifugal granulation and heat recovery system. Appl Therm Eng, 2018, 130: 1033 DOI: 10.1016/j.applthermaleng.2017.11.080
[15] Luo S Y, Fu J, Zhou Y M, et al. The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag. Renew Energy, 2017, 101: 1030 DOI: 10.1016/j.renene.2016.09.072
[16] 米沙, 谢锴, 孙岱, 等. 冶金渣颗粒与空气间的换热和阻力特性. 中国有色金属学报, 2015, 25(7): 1993 DOI: 10.19476/j.ysxb.1004.0609.2015.07.032 Mi S, Xie K, Sun D, et al. Heat transfer and resistance characteristics between metallurgical slag particles and air. Chin J Nonferrous Met, 2015, 25(7): 1993 DOI: 10.19476/j.ysxb.1004.0609.2015.07.032
[17] 王崇琳. 粉末飞行之研究I粉末在静止气体场中的飞行轨迹. 粉末冶金技术, 2008, 26(4): 243 Wang C L. Investigation on the flying of powder particles Ⅰ Trajectories of flying powder particles in static atmosphere. Powder Metall Technol, 2008, 26(4): 243
[18] Richter A, Nikrityuk P A. Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers. Int J Heat Mass Trans, 2012, 55(4): 1343 DOI: 10.1016/j.ijheatmasstransfer.2011.09.005
[19] Ni J J, Yu G S, Guo Q H, et al. Submodel for predicting slag deposition formation in slagging gasification systems. Energy Fuels, 2011, 25(3): 1004 DOI: 10.1021/ef101696a
[20] Liu J X, Yu Q B, Duan W J, et al. Experimental investigation on ligament formation for molten slag granulation. Appl Therm Eng, 2014, 73(1): 888 DOI: 10.1016/j.applthermaleng.2014.08.042
[21] Sun Y Q, Shen H W, Wang H, et al. Experimental investigation and modeling of cooling processes of high temperature slags. Energy, 2014, 76: 761 DOI: 10.1016/j.energy.2014.08.073
[22] Ding B, Wang H, Zhu X, et al. Crystallization behaviors of blast furnace (BF) slag in a phase-change cooling process. Energy Fuels, 2016, 30(4): 3331 DOI: 10.1021/acs.energyfuels.5b03000
[23] Han C, Chen M, Zhang W D, et al. Viscosity model for iron blast furnace slags in SiO2–Al2O3–CaO–MgO system. Steel Res Int, 2015, 86(6): 678 DOI: 10.1002/srin.201400340
[24] 王利明, 袁意林, 邵毅敏, 等. 二十辊轧机轧辊磨床砂轮动不平衡对磨削颤振的影响. 工程科学学报, 2015, 37(suppl1): 78 Wang L M, Yuan Y L, Shao Y M, et al. Chatter analysis about roll grinder of twenty-high rolling mill in grinding process with grinding wheel dynamic imbalance fault. Chin J Eng, 2015, 37(Suppl1): 78
[25] Dhirhi R, Prasad K, Shukla A, et al. Experimental study of rotating dry slag granulation unit: Operating regimes, particle size analysis and scale up. Appl Therm Eng, 2016, 107: 898 DOI: 10.1016/j.applthermaleng.2016.07.049
[26] Wang L Y, Sun W Q, Li X L, et al. Flight dynamics and sensible heat recovery of granulated blast furnace slag. Open Fuels Energy Sci J, 2015, 8: 356 DOI: 10.2174/1876973X01508010356
-
期刊类型引用(0)
其他类型引用(1)