高级检索

钼合金顶头制备技术研究进展

潘以庆, 田青超, 徐文进

潘以庆, 田青超, 徐文进. 钼合金顶头制备技术研究进展[J]. 粉末冶金技术, 2021, 39(5): 452-461. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060015
引用本文: 潘以庆, 田青超, 徐文进. 钼合金顶头制备技术研究进展[J]. 粉末冶金技术, 2021, 39(5): 452-461. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060015
PAN Yi-qing, TIAN Qing-chao, XU Wen-jin. Research progress on the preparation technology of molybdenum alloy piercing plug[J]. Powder Metallurgy Technology, 2021, 39(5): 452-461. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060015
Citation: PAN Yi-qing, TIAN Qing-chao, XU Wen-jin. Research progress on the preparation technology of molybdenum alloy piercing plug[J]. Powder Metallurgy Technology, 2021, 39(5): 452-461. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060015

钼合金顶头制备技术研究进展

详细信息
    通讯作者:

    田青超: E-mail: tctian@shu.edu.cn

  • 中图分类号: TG146.4+12

Research progress on the preparation technology of molybdenum alloy piercing plug

More Information
  • 摘要: 钼合金顶头是生产不锈钢等高合金含量无缝钢管的关键工具之一。从钼合金顶头的化学成分、掺杂工艺、粉体粒度和烧结工艺等方面入手,研究影响顶头力学性能和使用寿命的主要因素。分析了不同合金元素及添加方式对合金强韧化机理的影响,讨论了粉体掺杂工艺、粉体粒度分布及控制对于后续制备过程中获得致密、均一组织的影响,对比了传统烧结工艺、活化烧结技术和新型烧结技术的优缺点,并为今后烧结成形工艺的研究提供了一些新思路。
    Abstract: Molybdenum alloy piercing plug is one of the key tools in manufacturing the seamless tubular products using the high alloying steels such as stainless steels. The main influential factors affecting the mechanical properties and service life of the molybdenum alloy piercing plug were studied from the chemical composition, doping process, particle size, and sintering process. Firstly, the effects of alloying elements and adding method on the strengthening and toughening mechanism of the alloys were analyzed. Then, the influence of the powder doping processes and the particle size distribution and control on obtaining the compact homogeneous tissue in the subsequent preparation process was discussed. Finally, the advantages and disadvantages of the traditional sintering process, activated sintering technology, and new sintering technology were compared and analyzed, and some new ideas were provided for the future research of sintering forming technology.
  • 电容器级钽丝是用于制作钽电解电容器的阳极引线,其优点是钽丝的表面氧化膜介电常数大,可靠性高。电容器级钽丝是以钽粉为原料,利用粉末冶金方法烧结成钽条后,再经轧制、拉拔等金属塑性加工手段制成的,其重要性能指标包括抗拉强度、直线度、化学成分组成和漏电流等。近几年,随着钽电解电容器向小型化和耐高压方向发展,钽丝的生产工艺也在不断完善和更新;在稳定力学性能、化学成分和电性能的前提下,要提高钽丝的直线度,保证电容器成形过程中钽丝不弯曲,从而提高电容器的可靠性[1]

    众所周知,在拉拔过程中,随着加工量的增加,不论是钽丝还是其他材料的线材都会因为抵抗变形而产生大量的残余应力,导致线材的直线度变差。钽电解电容器对其阳极引线—钽丝的直线度要求很高,所以需要通过一种矫直的方法来均匀或消除这种残余应力。目前,在硬态钽丝的生产中采用拉弯矫直的原理[2],依靠矫直机两辊(中间内凹,双曲线辊)的角度变化对钽丝进行反复弯曲,使钽丝的残余应力均匀的分布在钽丝内部组织中,从而达到矫直的目的。常用的矫直方法还有热应力矫直方法,即通过连续走线的方式,将钽丝置于高温环境中,利用再结晶消除钽丝内部的残余应力[3]。钽丝之所以弯曲,是因为在拉拔过程中受到拉应力和压应力,两种力的作用大小不一而形成的;热应力矫直法是在放线张力和高温的作用下,消除钽丝中原有的拉应力和压应力,使弯曲的钽丝完全变直的过程。矫直后的钽丝在放线张力下绕在一定曲率半径的绕线盘上,绕线盘的曲率半径对钽丝的直线度影响很大,尤其对退火态钽丝的直线度影响更大。采用高温连续走线退火方法生产钽丝,钽丝微观组织细小、均匀,是生产高性能和直线度良好电容器级钽丝的有效工艺。本文通过优化连续退火工艺和矫直收线工艺来改善钽丝的直线度,从而提高钽丝的适用性。

    根据用户对钽丝耐高温性能要求的不同,以掺杂或非掺杂钽粉为原料,采用粉末冶金法生产具有耐高温性能的钽丝。在钽粉中掺杂可提高钽丝再结晶退火温度,细化钽丝晶粒度,提高钽丝强度,增加钽丝的抗变形能力[4]

    不同直线度的非掺杂钽丝(直径为0.8 mm)再结晶组织如图 1图 2所示。从再结晶钽丝的晶粒度分析,直线度好的钽丝晶粒细小,没有出现晶粒长大的情况,说明退火不完全,没有将金属内部的残余应力完全消除。由于晶粒之间存在一定的变形抗力,在1800 ℃高温条件下退火,钽丝内部晶粒出现再结晶,晶粒明显细化且很均匀,说明晶粒之间存在的变形应力被完全消除,钽丝的直线度较好,退火后钽丝产品的抗拉强度较小。

    图  1  直线度为4/100钽丝晶粒度
    Figure  1.  Grain size of the tantalum wire with the straightness of 4/100
    图  2  直线度为0.4/100钽丝晶粒度
    Figure  2.  Grain size of the tantalum wire with the straightness of 0.4/100

    采用掺杂(钇、硅)[5]钽粉制备钽丝,可在钽丝高温退火过程中细化钽丝组织晶粒度,起到细晶韧化、固溶强化和弥散强化的作用[6],使钽丝具有更好的室温力学性能、漏电流、烧结折丝及抗氧脆性性能,因此在生产耐高温有机电容器中被普遍使用。在原料钽粉中掺杂钇制备钽丝,研究钽丝在高温退火后的直线度。

    图 3图 4所示为掺杂钇元素和非掺杂钽丝的显微组织晶粒度。由图可知,在相同退火条件下,掺杂钽丝的晶粒细小、均匀,非掺杂钽丝的晶粒粗大、不均匀。这表明掺杂钽丝的结晶程度不如非掺杂钽丝,这是因为钽丝中掺杂的钇元素均匀镶嵌在钽晶界上,抑制了钽晶粒的长大和回复,无法将残留在晶界上的残余应力消除干净[7]。为了完全消除掺杂钽丝中的残余应力,建议将高温连续退火温度控制在1650~1900 ℃,走线速度控制在10~40 m·min-1。晶界上的钇元素含量随着温度的升高逐渐降低,金属的抗拉强度也会逐渐降低,从而达到回复的目的。掺杂后的钽丝经过高温退火能有效提高其再结晶度,使退火后钽丝的直线度得到显著改善。

    图  3  0.8 mm掺杂钇元素钽丝的晶粒度
    Figure  3.  Grain size of the tantalum wire doping by yttrium element in the diameter of 0.8 mm
    图  4  0.8 mm非掺杂钽丝的晶粒度
    Figure  4.  Grain size of the tantalum wire without doping in the diameter of 0.8 mm

    在相同退火条件下,掺杂和非掺杂钽丝的直线度如表 1所示。由表可知,在高温连续退火后,掺杂和非掺杂钽丝直线度的标准偏差分别为0.24和0.23,没有明显差异;经精绕密排后,掺杂钽丝直线度的标准偏差为0.16,非掺杂钽丝直线度的标准偏差为0.36,掺杂钽丝直线度的变化比非掺杂钽丝要小的多,其稳定性好。在相同退火条件下,虽然掺杂钽丝的再结晶过程已经形成,但晶粒大小远不及非掺杂钽丝晶粒的粗大,因此晶粒与晶界之间的应力相应也较大,相对抵制塑性变形的能力也较大。因此,在精绕密排过程中,掺杂钽丝即便发生一定的塑性变形,也没有非掺杂钽丝那么明显,掺杂钽丝的直线度明显好于非掺杂钽丝[8]。为满足轧制片式钽电解电容器阳极引线的要求,阳极引线优先选用掺杂的钽丝。

    表  1  掺杂和非掺杂钽丝(0.8 mm)直线度
    Table  1.  Straightness of the tantalum wires (0.8 mm) with and without doping
    次数 掺杂钽丝直线度,x/100 非掺杂钽丝直线度,x/100
    连续退火后 产品精绕密排 连续退火后 产品精绕密排
    第一次 0.80/100 1.70/100 0.80/100 2.80/100
    第二次 1.00/100 1.70/100 1.00/100 2.40/100
    第三次 1.40/100 1.50/100 1.20/100 3.10/100
    第四次 0.80/100 1.30/100 0.80/100 2.20/100
    第五次 0.80/100 1.50/100 0.60/100 2.40/100
    第六次 0.80/100 1.40/100 0.60/100 2.20/100
    均值 0.93/100 1.52/100 0.83/100 2.52/100
    标准差 0.24/100 0.16/100 0.23/100 0.36/100
    下载: 导出CSV 
    | 显示表格

    选用同批次ϕ0.6 mm掺杂钽丝。在高温连续退火前,对部分钽丝进行矫直,对另外一部分钽丝未进行矫直,两种钽丝经高温退火后直线度的对比试验结果如表 2所示[9]。从表 2可以看出,退火前钽丝的直线度对退火后钽丝的直线度有显著影响,这是因为走线式连续退火不可能将钽丝的残余内应力完全消除,退火后钽丝发生的塑性变形是不完全的,丝材弯曲一侧的压应力和另一侧的拉应力没有被完全消除[10]。在高温退火前对钽丝进行一次热应力矫直过程,均衡了弯曲两侧的拉应力和压应力,使得丝材的直线度变得均匀可控。

    表  2  退火前钽丝直线度对退火后钽丝直线度的影响
    Table  2.  Effect of the tantalum wire straightening before annealing on the tantalum wire straightening after annealing
    工艺 钽丝直线度,x/100
    退火前矫直 退火前未矫直
    退火前 3.00/100 6.00/100
    退火后 2.00/100 3.50/100
    均值 2.50/100 4.75/100
    标准差 0.71/100 1.77/100
    下载: 导出CSV 
    | 显示表格

    选用同批次ϕ0.8 mm掺杂钽丝,在高温连续退火过程中(温度1650~1900 ℃,走线速度10~40 m·min-1),采用不同放线张力(0.5 kg和0.9kg)进行试验,退火后钽丝的直线度如图 5所示。由图可知,随着张力的增大,退火后钽丝的直线度在逐渐变好,由原来最大5.0/100变为最小0.8/100。这是因为钽丝在连续走线式退火过程中,张力的增大给直线度差的钽丝一个拉应力和一个压应力,这种拉应力、压应力越大,在高温再结晶回复越明显[11]。但是这种拉应力、压应力不可能无限制增加,在钽丝不发生塑性变形的前提下,可以提高拉应力、压应力,否则钽丝在高温下极易发生塑性变形[12],从而在宏观上表现为钽丝变细。通过试验发现,当钽丝直径大于ϕ0.6 mm时,张力增加到0.9 kg对钽丝直径影响不大。

    图  5  退火放线张力对钽丝直线度的影响
    Figure  5.  Effect of the payoff tension on the straightness of tantalum wire during annealing

    走线式连续退火炉因为是连续走线,钽丝在出炉口时温度很高,在出炉后经过出炉口定位轮时,由于走线方向发生一定角度的转向,此时定位轮会给钽丝施加一定的外力(F,如式(1)所示),这种外力极易让钽丝发生塑性变形,从而影响钽丝直线度。为了减少这种外力,唯一可以改变的是增大定位轮的直径。由向心力公式(式(2))可知,增加定位轮直径,可以减小定位轮转动产生的向心力(F)[13]

    $$ F_{\text {外 }}=F_{\text {向 }} $$ (1)
    $$ F_{\text {向 }}=M v^{2} / R $$ (2)

    式中:F为定位轮给钽丝施加的外力;F为定位轮转动产生的向心力;R为定位轮直径;M为定位轮质量;v为定位轮转速。

    选用同批次ϕ0.8 mm掺杂钽丝,通过将连续退火出炉口定位轮直径由原来的220 mm增加到300 mm,在速度v不变的情况下,减少外力F的方法进行试验,改进钽丝的直线度,结果如表 3所示。从表可知,经过增加连续退火出炉口定位轮直径后,钽丝的直线度得到明显改善。

    表  3  续退火出炉口定位轮直径对退火后钽丝直线度的影响
    Table  3.  Effect of the wheel diameter of tap hole on the straightness of tantalum wire after annealing
    导轮直径/ mm 钽丝直线度,x/100
    220 2.4/100
    300 0.8/100
    下载: 导出CSV 
    | 显示表格

    通常钽丝经过高温退火后,收线排列比较松散,需要对钽丝进行精绕密排,防止钽丝发生松丝、乱丝的现象,在存储、搬运和使用过程中影响钽丝的直线度。选用同批次ϕ0.8 mm掺杂钽丝,采用直径不同的收线盘进行精绕密排试验,在相同的精绕密排工艺条件下,钽丝的直线度如表 4所示。从表 4可以看出,对于密排前直线度相同的钽丝,在相同的精绕密排工艺条件下,密排到直径不同的收线盘上,测试出的钽丝直线度有明显的差距,随着收线盘直径的增大,其直线度变好。通常钽丝的精绕密排过程是需要一定的张力,这种张力情况与前面提到的退火收线一样,对钽丝也会造成一定的塑性变形,塑性变形在弹性变形范围之内发生,一定程度上会有回复,但塑性变形发生在弹性变形范围之外,就会产生永久性变形,从而影响钽丝的直线度。

    表  4  矫直收线盘直径的大小对钽丝直线度的影响
    Table  4.  Effect of the straightening coil diameter on the straightness of tantalum wire
    精绕收线盘直径/ mm 钽丝直线度,x/100
    密排前 密排后
    230 1.2/100 2.4/100
    300 1.2/100 1.3/100
    下载: 导出CSV 
    | 显示表格

    (1) 通过高温连续退火,掺杂钽丝的晶粒比非掺杂钽丝晶粒小且更加均匀,晶粒与晶界之间的应力也相应较大,抵制塑性变形的能力也较大,掺杂钽丝的直线度明显好于非掺杂钽丝。为满足轧制片式钽电解电容器阳极引线的要求,阳极引线优先选用掺杂的钽丝。

    (2) 钽丝退火前的直线度极大影响着退火后产品的直线度,因此在退火前必须进行去应力矫直过程。

    (3) 走线式连续退火的放线张力对钽丝直线度有一定的影响,张力越大,直线度越好,但不能无限增加,否则钽丝直径会发生变化。

    (4) 连续退火出炉口定位轮直径越大,钽丝的直线度越好;矫直收线盘的直径越大,钽丝的直线度越好。

  • 图  1   透射电子显微镜下Mo2C颗粒与Mo基体的结合界面以及对位错的“钉扎”现象[31]

    Figure  1.   Transmission electron microscope (TEM) images of the phase interface between Mo2C particles and Mo matrix and the pinning phenomenon by dislocations at the phase interface[31]

    图  2   透射电子显微镜下晶内与晶间颗粒微观形貌:(a)和(b)颗粒微观形貌;(c)和(d)为图2(b)A区域高分辨率透射电镜图像和衍射花斑;(e)和(f)为图2(b)B区域的高分辨率透射电镜图像和衍射花斑[34]

    Figure  2.   TEM images of the intragranular and intergranular particles: (a) and (b) the microstructure of the intragranular and intergranular particles; (c) and (d) the high-resolution and diffraction patterns for area A in Fig.2(b); (e) and (f) the high-resolution and diffraction patterns for area B in Fig.2(b)[34]

    图  3   钼镧合金的透射电镜微观结构:(a)钼晶粒与La2O3颗粒以及La2O3颗粒的选区电子衍射花样;(b)晶内La2O3颗粒与位错的相互作用[39]

    Figure  3.   TEM images of the Mo–La alloys: (a) Mo grains, La2O3 particles, and the selected area diffraction pattern of La2O3 particles; (b) intragranular La2O3 particles interact with dislocations[39]

    图  4   纳米钼粉与微米钼粉在加热速率10 ℃·min−1时的线性收缩(a)与收缩率(b)[43]

    Figure  4.   Linear shrinkage rate (a) and shrinkage rate (b) of the Mo nano-powders and micron Mo powders with the heating rate of 10 ℃·min−1[43]

    图  5   淬火后Mo–1.5Ni合金晶界边缘的高分辨率点阵条纹[49]

    Figure  5.   High-resolution lattice fringe of the grain boundaries in the quenched Mo–1.5Ni alloys[49]

    图  6   Mo–12.4Ni合金扫描电子显微结构:(a)淬火温度1344 ℃;(b)淬火温度1495 ℃[54]

    Figure  6.   Scanning electron microscope images of the Mo–12.4Ni alloys: (a) quenched at 1344 ℃; (b) quenched at 1495 ℃[54]

    图  7   Mo–0.45C晶粒亚结构:(a)晶相截面光学显微组织形貌;(b)熔池边界高亮区域光学显微形貌;(c)晶粒亚结构纵向截面透射电镜大角度环形暗场相;(d)晶粒亚结构横向截面透射电镜大角度环形暗场相;(e)Mo–Mo2C界面高分辨透射电镜形貌[62]

    Figure  7.   Cellular substructure of the Mo–0.45C particles: (a) optical microscope images of the crystalline phase in cross section; (b) optical microscope images of the highlighted melt pool boundaries; (c) high-angle annular dark-field TEM images of the cellular substructure in longitudinal direction; (d) high-angle annular dark-field TEM images of the cellular substructure in transverse direction; (e) HRTEM images of the Mo–Mo2C interface[62]

    表  1   合金元素及添加方式对钼合金性能的影响

    Table  1   Effects of alloying elements and adding method on the properties of molybdenum alloys

    添加元素载体优点缺点备注
    Ti[11]Ti形成连续固溶体,提高拉伸强度(358→413 MPa)原子尺寸差小,固溶强化有限,
    易生成氧化物颗粒
    Mo–0.8Ti
    (质量分数)
    TiH2脆性较大,颗粒小,分布均匀,
    固溶效果好,提高拉伸强度
    (358→489 MPa)
    需要脱氢、排气处理Mo–0.8TiH2
    (质量分数)
    Zr[11]Zr原子尺寸差大,固溶强化显著,拉伸强度提高
    (358→452 MPa)
    固溶度较小,强化效果有限,
    易生成氧化物颗粒
    Mo–0.1Zr
    (质量分数)
    ZrH2固溶强化较弱,拉伸强度提高(358→398 MPa)脱氢后活性较高,倾向于生成氧化物颗粒,而非固溶体Mo–0.1ZrH2
    (质量分数)
    C[12]石墨价格低廉,生产工艺简单颗粒较大,层状结构,吸附能力弱,
    含氧量较高(1.29×10−4
    硬脂酸具有一定黏度,有利于颗粒重排,
    液相能增加接触面积
    烧结时会发生分解,形成碳化物
    颗粒和气相,易产生孔洞
    C18H36O2
    (质量分数)
    碳纳米管比表面积大,相对密度高(97.7%),表面活性大,含氧量低(3×10−5制备工艺复杂,生产成本较高
    稀土La2O3[1314]钉扎并延缓位错运动,吸附晶间杂质,提高抗拉强度和延伸率延伸率随添加量先增加后减小
    Y2O3[1516]细化晶粒,以球状颗粒钉扎晶界,提高抗拉强度和延伸率含氧量增加
    CeO2[1617]细晶效果最好,晶界杂质浓度最低,CeO2与Mo基体存在共格关系相对密度略有下降
    CeO2/Y2O3[18]复合强化效果好,显著提高抗拉强度(960 MPa)和延伸率(16%)易造成稀土氧化物富集,微量
    添加性能即达到峰值
    Re[1920]提高塑性,降低韧脆转变温度,
    提高再结晶温度
    存在固溶软化,易出现脆性相,
    价格昂贵
    W[21]与Mo原子半径相同,能形成连续固溶体,晶粒细化显著,显微硬度提高需要高能球磨预先合金化,
    易与O形成氧化物颗粒
    电火花烧结
    Si[2223]细化晶粒,Mo3Si第二相强化,抗高温蠕变,抗高温氧化,导电和导热性好固溶度小,MoSi2在400~600 ℃
    易氧化,室温脆性大
    Al2O3[2425]细化晶粒,提高强度和韧性,改善高温力学性能和耐磨性
    下载: 导出CSV

    表  2   添加元素及其对钼合金烧结温度和性能的影响

    Table  2   Effects of adding elements on the sintering temperature and properties of molybdenum alloys

    添加元素优点缺点备注
    Ni[4849]大幅降低烧结温度(500 ℃),提高相对密度(82.1%→95.5%)生成δ-NiMo,抗弯强度、
    硬度显著下降
    Mo–1.5Ni
    (质量分数)
    Pd[48]活化效果最好,活化能最低(405 kJ·mol−1
    280 kJ·mol−1
    价格昂贵Mo–0.5Pd
    (原子数分数)
    Ni、Fe[50]提高烧结相对密度(96.1%),提高抗弯强度(336 MPa→418 MPa)生成δ-NiMoMo–1Ni–0.5Fe
    (质量分数)
    Ni、Cu[51]降低液相烧结温度,提高烧结相对密度(99.1%),提高抗弯强度(336 MPa→403 MPa)生成δ-NiMoMo–1Ni–0.5Cu
    (质量分数)
    Ni、Ni3Al[52]提高烧结相对密度,提高抗拉强度、延伸率和高温力学性能生成脆性化合物
    Ni、Cu、Fe[50]提高烧结相对密度(99.9%),提高抗弯强度(1222 MPa)Ni质量分数小于3%时生成δ-NiMoMo–4Ni–1Cu–1Fe
    (质量分数)
    下载: 导出CSV
  • [1] 苑洪彬, 吴立凡, 王权. 无缝钢管穿孔机顶头使用寿命的研究现状. 包钢科技, 2007, 33(5): 10 DOI: 10.3969/j.issn.1009-5438.2007.05.004

    Yuan H B, Wu L F, Wang Q. Studying situation on improving the service life of piercing plugs. Sci Technol Baotou Steel, 2007, 33(5): 10 DOI: 10.3969/j.issn.1009-5438.2007.05.004

    [2] 郑成明, 田青超. 合金元素对顶头钢氧化行为的影响. 金属学报, 2019, 55(4): 427 DOI: 10.11900/0412.1961.2018.00250

    Zheng C M, Tian Q C. Effect of alloy elements on oxidation behavior of piercing plug steel. Acta Metall Sinica, 2019, 55(4): 427 DOI: 10.11900/0412.1961.2018.00250

    [3] 肖冬, 王继春, 毛志忠, 等. 穿孔效率与能耗的建模与综合优化. 钢铁研究学报, 2013, 25(1): 14

    Xiao D, Wang J C, Mao Z Z, et al. Modeling and optimization for piercing efficiency and energy consumption J Iron Steel Res, 2013, 25(1): 14

    [4] 王增海, 李鹏, 张文亮. 穿孔机顶头失效形式分析与对策. 包钢科技, 2015, 41(5): 29 DOI: 10.3969/j.issn.1009-5438.2015.05.010

    Wang Z H, Li P, Zhang W L. Analysis and countermeasures on failure mode for top of piercer. Sci Technol Baotou Steel, 2015, 41(5): 29 DOI: 10.3969/j.issn.1009-5438.2015.05.010

    [5] 肖云, 王超, 张恒, 等. 一种顶头: 中国专利, 106513440A. 2017-03-22

    Xiao Y, Wang C, Zhang H, et al. One Type of Piercing Plug: China Patent, 106513440A. 2017-03-22

    [6] 王德奎, 王德伟, 黄仲佳, 等. 一种金属基复合材料穿孔顶头: 中国专利, 110952090A. 2020-04-03

    Wang D K, Wang D W, Huang Z J, et al. One Type of Metal Matrix Composite Piercing Plug: China Patent, 110952090A. 2020-04-03

    [7]

    Majumdar S, Raveendra S, Samajdar I, et al. Densification and grain growth during isothermal sintering of Mo and mechanically alloyed Mo–TZM. Acta Mater, 2009, 57: 4158 DOI: 10.1016/j.actamat.2009.05.013

    [8] 徐有容, 窦铁镛, 宋治鉴. 穿孔不锈钢管用钼合金顶头的研制和应用. 上海金属, 1995, 17(5): 37

    Xu Y R, Dou T Y, Song Z J. A manufacture and its application of wrought Mo alloy piercing-mandrel to stainless steel tube piercing. Shanghai Met, 1995, 17(5): 37

    [9] 田丹, 张俊, 罗振中. 粉冶钼基合金顶头的生产与质量控制. 中国钼业, 2008, 32(2): 49 DOI: 10.3969/j.issn.1006-2602.2008.02.013

    Tian D, Zhang J, Luo Z Z. Analysis of molybdenum base alloy anvil production and quality control. China Molybd Ind, 2008, 32(2): 49 DOI: 10.3969/j.issn.1006-2602.2008.02.013

    [10] 黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004

    Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004

    [11]

    Fan J L, Lu M Y, Cheng H C, et al. Effect of alloying elements Ti, Zr on the property and microstructure of molybdenum. Int J Refract Met Hard Mater, 2009, 27: 78 DOI: 10.1016/j.ijrmhm.2008.03.006

    [12]

    Hu P, Chang T, Yu Z T, et al. Synthesis of hypoxia-high density TZM alloy based on mechanochemistry and particle size distribution theories. J Alloys Compd, 2017, 698: 994 DOI: 10.1016/j.jallcom.2016.12.249

    [13]

    Cheng P M, Zhang G J, Zhang J Y, et al. Coupling effect of intergranular and intragranular particles on ductile fracture of Mo–La2O3 alloys. Mater Sci Eng A, 2015, 640: 320 DOI: 10.1016/j.msea.2015.05.032

    [14]

    Chen X, Li B, Wang T, et al. Strengthening mechanisms of Mo-La2O3 alloys processed by solid-solid doping and vacuum hot-pressing sintering. Vacuum, 2018, 152: 70

    [15] 陈大军, 吴护林, 李忠盛, 等. 高含量La2O3/Y2O3对钼合金微观组织与性能的影响. 粉末冶金技术, 2016, 34(1): 26 DOI: 10.3969/j.issn.1001-3784.2016.01.005

    Chen D J, Wu H L, Li Z S, et al. Effects of the high content La2O3/Y2O3 on microstructure and mechanical properties of Mo-alloy. Powder Metall Technol, 2016, 34(1): 26 DOI: 10.3969/j.issn.1001-3784.2016.01.005

    [16] 杨秦莉, 孟庆乐, 冯鹏发, 等. 稀土Y、Ce对钼合金力学性能的影响. 中国钼业, 2012, 36(5): 51 DOI: 10.3969/j.issn.1006-2602.2012.05.014

    Yang Q L, Meng Q L, Feng P F, et al. Effect of rare-earth Y and Ce on the mechanical properties of Mo alloy. China Molybd Ind, 2012, 36(5): 51 DOI: 10.3969/j.issn.1006-2602.2012.05.014

    [17] 付小俊. 稀土氧化物纳米掺杂对钼合金丝力学性能的影响. 中国钨业, 2016, 31(3): 63 DOI: 10.3969/j.issn.1009-0622.2016.03.013

    Fu X J. Effect of doped rare earth oxides on the mechanical properties of molybdenum alloy wire. China Tungsten Ind, 2016, 31(3): 63 DOI: 10.3969/j.issn.1009-0622.2016.03.013

    [18] 曾建辉. 稀土钼顶头材质的研究. 稀有金属与硬质合金, 2001(2): 30 DOI: 10.3969/j.issn.1004-0536.2001.02.008

    Zeng J H. Study of Re Mo ejector material. Rare Met Cement Carb, 2001(2): 30 DOI: 10.3969/j.issn.1004-0536.2001.02.008

    [19]

    Leichtfried G, Schneibel J H, Heilmaier M. Ductility and impact resistance of powder-metallurgical molybdenurn-rhenium alloys. Metall Mater Trans A, 2006, 37(6): 2955

    [20]

    Mueller A J, Bianco R, Buckman R W. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum–rhenium alloys. Int J Refract Met Hard Mater, 2000, 18: 205 DOI: 10.1016/S0263-4368(00)00028-7

    [21]

    Ohser-Wiedemann R, Martin U, Müller A, et al. Spark plasma sintering of Mo–W powders prepared by mechanical alloying. J Alloys Compd, 2013, 560: 27 DOI: 10.1016/j.jallcom.2013.01.142

    [22]

    Jéhanno P, Heilmaier M, Kestler H. Characterization of an industrially processed Mo-based silicide alloy. Intermetallics, 2004, 12(7-9): 1005 DOI: 10.1016/j.intermet.2004.03.006

    [23]

    Sturm D, Heilmaier M, Schneibel J H, et al. The influence of silicon on the strength and fracture toughness of molybdenum. Mater Sci Eng A, 2007, 463: 107 DOI: 10.1016/j.msea.2006.07.153

    [24]

    Zhou Y C, Gao Y M, Wei S Z, et al. Preparation and characterization of Mo/Al2O3 composites. Int J Refract Met Hard Mater, 2016, 54: 186 DOI: 10.1016/j.ijrmhm.2015.07.033

    [25]

    Xu L J, Wei S Z, Li J W, et al. Preparation, microstructure and properties of molybdenum alloys reinforced by in-situ Al2O3 particles. Int J Refract Met Hard Mater, 2012, 30: 208 DOI: 10.1016/j.ijrmhm.2011.08.012

    [26] 黄强, 李青, 宋尽霞, 等. TZM合金的研究进展. 材料导报, 2009, 23(21): 38 DOI: 10.3321/j.issn:1005-023X.2009.21.009

    Huang Q, Li Q, Song J X, et al. Recent progress in research on TZM alloy. Mater Rev, 2009, 23(21): 38 DOI: 10.3321/j.issn:1005-023X.2009.21.009

    [27] 蔡宗玉, 金建民, 陈桦. TZM钼合金强化机理分析. 上海钢研, 1993(3): 56

    Cai Z Y, Jin J M, Chen H. Analysis of the strengthening mechanism of TZM molybdenum alloy. J Shanghai Steel Iron Res, 1993(3): 56

    [28]

    Ahmadi E, Malekzadeh M, Sadrnezhaad S K. Preparation of nanostructured high-temperature TZM alloy by mechanical alloying and sintering. Int J Refract Met Hard Mater, 2011, 29: 141 DOI: 10.1016/j.ijrmhm.2010.09.003

    [29] 代宝珠, 魏世忠, 彭光辉, 等. 钼合金的强韧化机理与研究现状. 热加工工艺, 2009, 38(14): 51 DOI: 10.3969/j.issn.1001-3814.2009.14.015

    Dai B Z, Wei S Z, Peng G H, et al. Strengthening-toughening mechanism and research status of molybdenum alloys. Hot Work Technol, 2009, 38(14): 51 DOI: 10.3969/j.issn.1001-3814.2009.14.015

    [30] 谭望, 陈畅, 汪明朴, 等. 不同因素对钼及钼合金塑脆性能影响的研究. 材料导报, 2007, 21(8): 80 DOI: 10.3321/j.issn:1005-023X.2007.08.021

    Tan W, Chen C, Wang M P, et al. Study on the effects of various factors on the ductility and brittleness properties of molybdenum and molybdenum alloys. Mater Rev, 2007, 21(8): 80 DOI: 10.3321/j.issn:1005-023X.2007.08.021

    [31]

    Chen X, Li R, Li B, et al. High-strength molybdenum matrix composites with in-situ Mo2C by graphene addition. J Alloys Compd, 2020, 820: 153401 DOI: 10.1016/j.jallcom.2019.153401

    [32] 郭磊, 宋瑞, 淡新国, 等. 稀土钼合金制备工艺及强韧化机理研究现状. 中国钼业, 2017, 41(2): 45

    Guo L, Song R, Tan X G, et al. Present research status of preparation technology of rare earth molybdenum alloys and strengthening-toughening mechanism. China Molybd Ind, 2017, 41(2): 45

    [33] 陈闯, 魏世忠, 张国赏, 等. 钼合金的研究现状与应用进展. 稀有金属与硬质合金, 2012, 40(5): 45

    Chen C, Wei S Z, Zhang G S, et al. Current research and application development of molybdenum alloy. Rare Met Cement Carb, 2012, 40(5): 45

    [34]

    Yang X Q, Tan H, Lin N, et al. Effects of the lanthanum content on the microstructure and properties of the molybdenum alloy. Int J Refract Met Hard Mater, 2016, 61: 179 DOI: 10.1016/j.ijrmhm.2016.09.012

    [35]

    Hu P, Yang F, Deng J, et al. High temperature mechanical properties of TZM alloys under different lanthanum doping treatments. J Alloys Compd, 2017, 711: 64 DOI: 10.1016/j.jallcom.2017.03.346

    [36]

    Hu P, Hu B L, Wang K S, et al. Strengthening and elongation mechanism of lanthanum-doped titanium-zirconium-molybdenum alloy. Mater Sci Eng A, 2016, 678: 315 DOI: 10.1016/j.msea.2016.10.013

    [37] 董帝, 王承阳. 钼合金制备工艺的研究进展. 粉末冶金技术, 2017, 35(4): 304

    Dong D, Wang C Y. Research progress on preparation technology of molybdenum alloy. Powder Metall Technol, 2017, 35(4): 304

    [38]

    Wang K S, Tan J F, Hu P, et al. La2O3 effects on TZM alloy recovery, recrystallization and mechanical properties. Mater Sci Eng A, 2015, 636: 415 DOI: 10.1016/j.msea.2015.03.114

    [39]

    Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater, 2013, 12: 344 DOI: 10.1038/nmat3544

    [40]

    Dinger D R, Funk J K. Panicle-size analysis routines available on cerabull. Am Ceram Soc Bull, 1989, 68(8): 1406

    [41]

    Brouwers H J H. The role of nanotechnology for the development of sustainable concrete // Proceedings of ACI Session on "Nanotechnology of Concrete: Recent Developments and Future Perspectives". Denver, 2006: 69

    [42]

    Herring C. Effect of change of scale on sintering phenomena. J Appl Phys, 1950, 21: 301 DOI: 10.1063/1.1699658

    [43]

    Kim G S, Kim H G, Kim D G, et al. Densification behavior of Mo nanopowders prepared by mechanochemical processing. J Alloys Compd, 2009, 469(1): 401

    [44]

    Kim S H, Kim D G, Park M S, et al. Sintering kinetics analysis of molybdenum nanopowder in a non-isothermal process. Met Mater Int, 2011, 17(1): 63 DOI: 10.1007/s12540-011-0209-x

    [45]

    Sun G D, Zhang G H, Chou K C. An industrially feasible pathway for preparation of Mo nanopowder and its sintering behavior. Int J Refract Met Hard Mater, 2019, 84: 105039 DOI: 10.1016/j.ijrmhm.2019.105039

    [46] 赵虎. 钼及钼合金烧结技术研究及发展. 粉末冶金技术, 2019, 37(5): 382

    Zhao H. Research and development on the sintering techniques of molybdenum and molybdenum alloys. Powder Metall Technol, 2019, 37(5): 382

    [47] 史振琦, 黄晓玲, 易永鹏. 影响钼合金顶头使用寿命因素浅析. 中国钼业, 2014, 38(5): 57

    Shi Z Q, Huang X L, Yi Y P. Analysis on the influencing factors of molybdenum anvil service life. China Molybd Ind, 2014, 38(5): 57

    [48]

    German R M, Munir Z A. Heterodiffusion model for the activated sintering of molybdenum. J Less-Common Met, 1978, 58(1): 61 DOI: 10.1016/0022-5088(78)90071-1

    [49]

    Hwang K S, Huang H S. Identification of the segregation layer and its effects on the activated sintering and ductility of Ni-doped molybdenum. Acta Mater, 2003, 51: 3915 DOI: 10.1016/S1359-6454(03)00216-7

    [50]

    Hwang K S, Huang H S. Ductility improvement of Ni-added molybdenum compacts through the addition of Cu and Fe powders. Int J Refract Met Hard Mater, 2004, 22: 185 DOI: 10.1016/j.ijrmhm.2004.06.003

    [51]

    Hwang K S, Huang H S. The liquid phase sintering of molybdenum with Ni and Cu additions. Mater Chem Phys, 2001, 67: 92 DOI: 10.1016/S0254-0584(00)00425-9

    [52]

    Sakamoto T, Nishida M, Okazaki K. Microstructure of Mo powders sintered with Ni and Ni3Al powders. J Jpn Soc Powder Powder Metall, 1999, 46(12): 1221 DOI: 10.2497/jjspm.46.1221

    [53]

    Askill J. Tracer Diffusion Data for Metals, Alloys, and Simple Oxides. Boston: Springer-Verlag USA, 1970

    [54]

    Shi X M, Luo J. Grain boundary wetting and prewetting in Ni-doped Mo. Appl Phys Lett, 2009, 9: 251908

    [55]

    Luo J. Stabilization of nanoscale quasi-liquid interfacial films in inorganic materials: a review and critical assessment. Crit Rev Solid State Mater Sci, 2007, 32: 67 DOI: 10.1080/10408430701364388

    [56]

    Zhou N X, Luo J. Developing grain boundary diagrams for multicomponent alloys. Acta Mater, 2015, 91: 202 DOI: 10.1016/j.actamat.2015.03.013

    [57]

    Ohser-Wiedemann R, Martin U, Seifert H J, et al. Densification behavior of pure molybdenum powder by spark plasma sintering. Int J Refract Met Hard Mater, 2010, 28(4): 550 DOI: 10.1016/j.ijrmhm.2010.03.003

    [58]

    Danişman C B, Yavas B, Yucel O, et al. Processing and characterization of spark plasma sintered TZM alloy. J Alloys Compd, 2016, 685: 860 DOI: 10.1016/j.jallcom.2016.06.161

    [59]

    Faidel D, Jonas D, Natour G, et al. Investigation of the selective laser melting process with molybdenum powder. Addit Manuf, 2015, 8: 88

    [60]

    Chun M K, Rose K. Interaction of high-intensity laser beams with metals. J Appl Phys, 1970, 41(2): 614 DOI: 10.1063/1.1658722

    [61]

    Wang D Z, Yu C F, Ma J, et al. Densification and crack suppression in selective laser melting of pure molybdenum. Mater Des, 2017, 129: 44 DOI: 10.1016/j.matdes.2017.04.094

    [62]

    Kaserer L, Braun J, Stajkovic J, et al. Fully dense and crack free molybdenum manufactured by selective laser melting through alloying with carbon. Int J Refract Met Hard Mater, 2019, 84: 105000 DOI: 10.1016/j.ijrmhm.2019.105000

图(7)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-09
  • 网络出版日期:  2021-09-25
  • 刊出日期:  2021-10-27

目录

/

返回文章
返回