高级检索

放电等离子烧结B4C研究进展

闫星亨, 周新贵, 王洪磊

闫星亨, 周新贵, 王洪磊. 放电等离子烧结B4C研究进展[J]. 粉末冶金技术, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001
引用本文: 闫星亨, 周新贵, 王洪磊. 放电等离子烧结B4C研究进展[J]. 粉末冶金技术, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001
YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001
Citation: YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001

放电等离子烧结B4C研究进展

详细信息
    通讯作者:

    周新贵: E-mail: zhouxinguilmy@163.com

  • 中图分类号: TB333

Research progress of B4C prepared by spark plasma sintering

More Information
  • 摘要:

    B4C是一种重要的工业材料,被广泛应用于零件加工、航空航天、装甲防护和核工业领域。放电等离子烧结是一种通过多场耦合作用来实现材料低温快速烧结的技术。本文综述了近几年来放电等离子烧结制备B4C陶瓷的研究现状,阐述了放电等离子烧结的基本原理和特点,着重分析了不同原料粉末和不同烧结工艺参数对B4C结构和性能的影响,最后对放电等离子烧结B4C陶瓷的发展做出了展望。

    Abstract:

    B4C is a critical industrial material, which is widely used in parts processing, aerospace, armor protection, and nuclear industry. Spark plasma sintering (SPS) technology can realize the rapid sintering of materials at low temperature through the multi field coupling. The research status of B4C ceramics sintered by SPS in recent years was reviewed in this paper. The basic principle and characteristics of SPS were expounded. The effects of the raw powders and sintering parameters on the composition and properties of B4C were emphatically analyzed. Finally, the development of B4C ceramics sintered by SPS was prospected.

  • 电容器级钽丝是用于制作钽电解电容器的阳极引线,其优点是钽丝的表面氧化膜介电常数大,可靠性高。电容器级钽丝是以钽粉为原料,利用粉末冶金方法烧结成钽条后,再经轧制、拉拔等金属塑性加工手段制成的,其重要性能指标包括抗拉强度、直线度、化学成分组成和漏电流等。近几年,随着钽电解电容器向小型化和耐高压方向发展,钽丝的生产工艺也在不断完善和更新;在稳定力学性能、化学成分和电性能的前提下,要提高钽丝的直线度,保证电容器成形过程中钽丝不弯曲,从而提高电容器的可靠性[1]

    众所周知,在拉拔过程中,随着加工量的增加,不论是钽丝还是其他材料的线材都会因为抵抗变形而产生大量的残余应力,导致线材的直线度变差。钽电解电容器对其阳极引线—钽丝的直线度要求很高,所以需要通过一种矫直的方法来均匀或消除这种残余应力。目前,在硬态钽丝的生产中采用拉弯矫直的原理[2],依靠矫直机两辊(中间内凹,双曲线辊)的角度变化对钽丝进行反复弯曲,使钽丝的残余应力均匀的分布在钽丝内部组织中,从而达到矫直的目的。常用的矫直方法还有热应力矫直方法,即通过连续走线的方式,将钽丝置于高温环境中,利用再结晶消除钽丝内部的残余应力[3]。钽丝之所以弯曲,是因为在拉拔过程中受到拉应力和压应力,两种力的作用大小不一而形成的;热应力矫直法是在放线张力和高温的作用下,消除钽丝中原有的拉应力和压应力,使弯曲的钽丝完全变直的过程。矫直后的钽丝在放线张力下绕在一定曲率半径的绕线盘上,绕线盘的曲率半径对钽丝的直线度影响很大,尤其对退火态钽丝的直线度影响更大。采用高温连续走线退火方法生产钽丝,钽丝微观组织细小、均匀,是生产高性能和直线度良好电容器级钽丝的有效工艺。本文通过优化连续退火工艺和矫直收线工艺来改善钽丝的直线度,从而提高钽丝的适用性。

    根据用户对钽丝耐高温性能要求的不同,以掺杂或非掺杂钽粉为原料,采用粉末冶金法生产具有耐高温性能的钽丝。在钽粉中掺杂可提高钽丝再结晶退火温度,细化钽丝晶粒度,提高钽丝强度,增加钽丝的抗变形能力[4]

    不同直线度的非掺杂钽丝(直径为0.8 mm)再结晶组织如图 1图 2所示。从再结晶钽丝的晶粒度分析,直线度好的钽丝晶粒细小,没有出现晶粒长大的情况,说明退火不完全,没有将金属内部的残余应力完全消除。由于晶粒之间存在一定的变形抗力,在1800 ℃高温条件下退火,钽丝内部晶粒出现再结晶,晶粒明显细化且很均匀,说明晶粒之间存在的变形应力被完全消除,钽丝的直线度较好,退火后钽丝产品的抗拉强度较小。

    图  1  直线度为4/100钽丝晶粒度
    Figure  1.  Grain size of the tantalum wire with the straightness of 4/100
    图  2  直线度为0.4/100钽丝晶粒度
    Figure  2.  Grain size of the tantalum wire with the straightness of 0.4/100

    采用掺杂(钇、硅)[5]钽粉制备钽丝,可在钽丝高温退火过程中细化钽丝组织晶粒度,起到细晶韧化、固溶强化和弥散强化的作用[6],使钽丝具有更好的室温力学性能、漏电流、烧结折丝及抗氧脆性性能,因此在生产耐高温有机电容器中被普遍使用。在原料钽粉中掺杂钇制备钽丝,研究钽丝在高温退火后的直线度。

    图 3图 4所示为掺杂钇元素和非掺杂钽丝的显微组织晶粒度。由图可知,在相同退火条件下,掺杂钽丝的晶粒细小、均匀,非掺杂钽丝的晶粒粗大、不均匀。这表明掺杂钽丝的结晶程度不如非掺杂钽丝,这是因为钽丝中掺杂的钇元素均匀镶嵌在钽晶界上,抑制了钽晶粒的长大和回复,无法将残留在晶界上的残余应力消除干净[7]。为了完全消除掺杂钽丝中的残余应力,建议将高温连续退火温度控制在1650~1900 ℃,走线速度控制在10~40 m·min-1。晶界上的钇元素含量随着温度的升高逐渐降低,金属的抗拉强度也会逐渐降低,从而达到回复的目的。掺杂后的钽丝经过高温退火能有效提高其再结晶度,使退火后钽丝的直线度得到显著改善。

    图  3  0.8 mm掺杂钇元素钽丝的晶粒度
    Figure  3.  Grain size of the tantalum wire doping by yttrium element in the diameter of 0.8 mm
    图  4  0.8 mm非掺杂钽丝的晶粒度
    Figure  4.  Grain size of the tantalum wire without doping in the diameter of 0.8 mm

    在相同退火条件下,掺杂和非掺杂钽丝的直线度如表 1所示。由表可知,在高温连续退火后,掺杂和非掺杂钽丝直线度的标准偏差分别为0.24和0.23,没有明显差异;经精绕密排后,掺杂钽丝直线度的标准偏差为0.16,非掺杂钽丝直线度的标准偏差为0.36,掺杂钽丝直线度的变化比非掺杂钽丝要小的多,其稳定性好。在相同退火条件下,虽然掺杂钽丝的再结晶过程已经形成,但晶粒大小远不及非掺杂钽丝晶粒的粗大,因此晶粒与晶界之间的应力相应也较大,相对抵制塑性变形的能力也较大。因此,在精绕密排过程中,掺杂钽丝即便发生一定的塑性变形,也没有非掺杂钽丝那么明显,掺杂钽丝的直线度明显好于非掺杂钽丝[8]。为满足轧制片式钽电解电容器阳极引线的要求,阳极引线优先选用掺杂的钽丝。

    表  1  掺杂和非掺杂钽丝(0.8 mm)直线度
    Table  1.  Straightness of the tantalum wires (0.8 mm) with and without doping
    次数 掺杂钽丝直线度,x/100 非掺杂钽丝直线度,x/100
    连续退火后 产品精绕密排 连续退火后 产品精绕密排
    第一次 0.80/100 1.70/100 0.80/100 2.80/100
    第二次 1.00/100 1.70/100 1.00/100 2.40/100
    第三次 1.40/100 1.50/100 1.20/100 3.10/100
    第四次 0.80/100 1.30/100 0.80/100 2.20/100
    第五次 0.80/100 1.50/100 0.60/100 2.40/100
    第六次 0.80/100 1.40/100 0.60/100 2.20/100
    均值 0.93/100 1.52/100 0.83/100 2.52/100
    标准差 0.24/100 0.16/100 0.23/100 0.36/100
    下载: 导出CSV 
    | 显示表格

    选用同批次ϕ0.6 mm掺杂钽丝。在高温连续退火前,对部分钽丝进行矫直,对另外一部分钽丝未进行矫直,两种钽丝经高温退火后直线度的对比试验结果如表 2所示[9]。从表 2可以看出,退火前钽丝的直线度对退火后钽丝的直线度有显著影响,这是因为走线式连续退火不可能将钽丝的残余内应力完全消除,退火后钽丝发生的塑性变形是不完全的,丝材弯曲一侧的压应力和另一侧的拉应力没有被完全消除[10]。在高温退火前对钽丝进行一次热应力矫直过程,均衡了弯曲两侧的拉应力和压应力,使得丝材的直线度变得均匀可控。

    表  2  退火前钽丝直线度对退火后钽丝直线度的影响
    Table  2.  Effect of the tantalum wire straightening before annealing on the tantalum wire straightening after annealing
    工艺 钽丝直线度,x/100
    退火前矫直 退火前未矫直
    退火前 3.00/100 6.00/100
    退火后 2.00/100 3.50/100
    均值 2.50/100 4.75/100
    标准差 0.71/100 1.77/100
    下载: 导出CSV 
    | 显示表格

    选用同批次ϕ0.8 mm掺杂钽丝,在高温连续退火过程中(温度1650~1900 ℃,走线速度10~40 m·min-1),采用不同放线张力(0.5 kg和0.9kg)进行试验,退火后钽丝的直线度如图 5所示。由图可知,随着张力的增大,退火后钽丝的直线度在逐渐变好,由原来最大5.0/100变为最小0.8/100。这是因为钽丝在连续走线式退火过程中,张力的增大给直线度差的钽丝一个拉应力和一个压应力,这种拉应力、压应力越大,在高温再结晶回复越明显[11]。但是这种拉应力、压应力不可能无限制增加,在钽丝不发生塑性变形的前提下,可以提高拉应力、压应力,否则钽丝在高温下极易发生塑性变形[12],从而在宏观上表现为钽丝变细。通过试验发现,当钽丝直径大于ϕ0.6 mm时,张力增加到0.9 kg对钽丝直径影响不大。

    图  5  退火放线张力对钽丝直线度的影响
    Figure  5.  Effect of the payoff tension on the straightness of tantalum wire during annealing

    走线式连续退火炉因为是连续走线,钽丝在出炉口时温度很高,在出炉后经过出炉口定位轮时,由于走线方向发生一定角度的转向,此时定位轮会给钽丝施加一定的外力(F,如式(1)所示),这种外力极易让钽丝发生塑性变形,从而影响钽丝直线度。为了减少这种外力,唯一可以改变的是增大定位轮的直径。由向心力公式(式(2))可知,增加定位轮直径,可以减小定位轮转动产生的向心力(F)[13]

    $$ F_{\text {外 }}=F_{\text {向 }} $$ (1)
    $$ F_{\text {向 }}=M v^{2} / R $$ (2)

    式中:F为定位轮给钽丝施加的外力;F为定位轮转动产生的向心力;R为定位轮直径;M为定位轮质量;v为定位轮转速。

    选用同批次ϕ0.8 mm掺杂钽丝,通过将连续退火出炉口定位轮直径由原来的220 mm增加到300 mm,在速度v不变的情况下,减少外力F的方法进行试验,改进钽丝的直线度,结果如表 3所示。从表可知,经过增加连续退火出炉口定位轮直径后,钽丝的直线度得到明显改善。

    表  3  续退火出炉口定位轮直径对退火后钽丝直线度的影响
    Table  3.  Effect of the wheel diameter of tap hole on the straightness of tantalum wire after annealing
    导轮直径/ mm 钽丝直线度,x/100
    220 2.4/100
    300 0.8/100
    下载: 导出CSV 
    | 显示表格

    通常钽丝经过高温退火后,收线排列比较松散,需要对钽丝进行精绕密排,防止钽丝发生松丝、乱丝的现象,在存储、搬运和使用过程中影响钽丝的直线度。选用同批次ϕ0.8 mm掺杂钽丝,采用直径不同的收线盘进行精绕密排试验,在相同的精绕密排工艺条件下,钽丝的直线度如表 4所示。从表 4可以看出,对于密排前直线度相同的钽丝,在相同的精绕密排工艺条件下,密排到直径不同的收线盘上,测试出的钽丝直线度有明显的差距,随着收线盘直径的增大,其直线度变好。通常钽丝的精绕密排过程是需要一定的张力,这种张力情况与前面提到的退火收线一样,对钽丝也会造成一定的塑性变形,塑性变形在弹性变形范围之内发生,一定程度上会有回复,但塑性变形发生在弹性变形范围之外,就会产生永久性变形,从而影响钽丝的直线度。

    表  4  矫直收线盘直径的大小对钽丝直线度的影响
    Table  4.  Effect of the straightening coil diameter on the straightness of tantalum wire
    精绕收线盘直径/ mm 钽丝直线度,x/100
    密排前 密排后
    230 1.2/100 2.4/100
    300 1.2/100 1.3/100
    下载: 导出CSV 
    | 显示表格

    (1) 通过高温连续退火,掺杂钽丝的晶粒比非掺杂钽丝晶粒小且更加均匀,晶粒与晶界之间的应力也相应较大,抵制塑性变形的能力也较大,掺杂钽丝的直线度明显好于非掺杂钽丝。为满足轧制片式钽电解电容器阳极引线的要求,阳极引线优先选用掺杂的钽丝。

    (2) 钽丝退火前的直线度极大影响着退火后产品的直线度,因此在退火前必须进行去应力矫直过程。

    (3) 走线式连续退火的放线张力对钽丝直线度有一定的影响,张力越大,直线度越好,但不能无限增加,否则钽丝直径会发生变化。

    (4) 连续退火出炉口定位轮直径越大,钽丝的直线度越好;矫直收线盘的直径越大,钽丝的直线度越好。

  • 图  1   ZrO2(a)和TiN(b)试样内部温度分布(1500 ℃保温)[14]

    Figure  1.   Temperature distributions inside the ZrO2 (a) and TiN (b) samples at 1500 ℃[14]

    图  2   氮气气氛下放电等离子烧结样品晶界显微形貌[21]:(a)扫描透射电子显微形貌;(b)能量过滤成像形貌

    Figure  2.   Grain boundaries in the diluted samples pepared by SPS in the N2-gas atmosphere[21]: (a) scanning transmission electron microscopy images; (b) energy filtered transmission electron microscopy images

    图  3   相似放电等离子烧结条件下不同混合方式混合B+C粉末获得的B4C陶瓷典型微观结构[22]:(a)、(d)常规混合;(b)、(e)高能球磨,5 min;(c)、(f)高能球磨,15 min

    Figure  3.   Typical microstructure of the B4C ceramics obtained from the B+C powders in different mixing methods under the similar SPS conditions[22]: (a), (d) conventional mixing; (b), (e) high energy ball milling (HEBM), 5 min; (c), (f) HEBM, 15 min

    图  4   1700 ℃放电等离子烧结B4C‒SiC复合材料中裂纹扩展显微形貌[28]

    Figure  4.   Microstructure of the crack propagation in the B4C‒SiC composites prepared by SPS at 1700 ℃[28]

    图  5   碳化硼样品压痕形貌[31]:(a)含Si碳化硼;(b)纯碳化硼

    Figure  5.   Typical indent morphologies of boron carbide[31]: (a) B4C with Si; (b) B4C without Si

    图  6   单体B4C陶瓷和B4C复合材料磨损曲线(a)和同一尺度下残余磨损痕迹的光学形貌(b)[35]

    Figure  6.   Wear curves (a) and the optical images of the residual wear scar at the same scale (b) for the monolithic B4C ceramic and B4C composites[35]

    图  7   TiB2摩尔分数对B4C‒TiB2复合材料硬度和韧性(a)及晶粒尺寸(b)的影响[37]

    Figure  7.   Effect of the TiB2 mole fraction on the hardness, toughness (a), and grain size (b) of the B4C‒TiB2 composites[37]

    图  8   SiC质量分数对B4C‒TiB2‒SiC复合材料力学性能的影响[38]:(a)相对密度和弯曲强度;(b)硬度和断裂韧性

    Figure  8.   Effect of the SiC mass fraction on the mechanical properties of the B4C‒TiB2‒SiC composites[38]: (a) relative density and bending strength; (b) hardness and fracture toughness

    图  9   纯B4C(a)和B4C/h-BN(添加体积分数2%c-BN)(b)蚀刻表面显微形貌[39]

    Figure  9.   Microstructure of the etched surfaces for the pure B4C (a) and B4C/h-BN (addingc-BN with the volume fraction of 2%) (b)[39]

    图  10   B4C‒SiC复合材料相对密度随SiC体积分数、Y2O3质量分数和烧结温度的变化[40]

    Figure  10.   Effect of SiC volume fraction, Y2O3 mass fraction, and sintering temperature on the relative density of the spark plasma sintered B4C‒SiC composites[40]

    图  11   放电等离子烧结过程中B/C原子比的变化(a)和烧结试样相对密度与B/C原子比的关系(b)[41]

    Figure  11.   Altering B/C by atom during SPS processing(a) and the relative density of the sintered specimens as a function of B/C by atom (b)[41]

    图  12   Al2O3质量分数对放电等离子烧结B4C陶瓷力学性能的影响[42]:(a)相对密度;(b)硬度和断裂韧性

    Figure  12.   Effect of Al2O3 mass fraction on the mechanical properties of the B4C ceramics by SPS[42]: (a) relative density; (b) hardness and fracture toughness

    图  13   质量分数5%(Ti3SiC2+Si)‒B4C陶瓷透射电子显微形貌及对应I、II、III晶粒能谱分析[44]

    Figure  13.   TEM images of the 5%(Ti3SiC2+Si)‒B4C ceramics by mass and the energy spectrum analysis of the corresponding grains I, II, and III[44]

    图  14   (TiB2+SiC)质量分数对放电等离子烧结B4C陶瓷力学性能的影响[45]:(a)相对密度、硬度和密度;(b)弯曲强度和断裂韧性

    Figure  14.   Effect of (TiB2+SiC) mass fraction on the mechanical properties of the B4C ceramics by SPS[45]: (a) relative density, hardness, and density; (b) flexural strength and fracture toughness

    表  1   不同放电等离子烧结工艺下样品的相对密度、维氏硬度、断裂韧性及动态韧性[20]

    Table  1   Relative density, Vickers hardness, fracture toughness, and dynamic toughness of the samples prepared by the different SPS processes[20]

    样品 放电等离子烧结工艺 相对密度 / % 硬度 / GPa 断裂韧性 / (MPa·m1/2) 动态韧性 / (MJ·m‒2)
    A 1600 ℃/20 min/300 MPa 95.6 27.6±1.8 6.6±0.7 19.3
    B 2100 ℃/10 min/50 MPa 97.8 35.3±2.6 3.8±0.4 5.1
    下载: 导出CSV

    表  2   1750 ℃放电等离子烧结B4C‒SiC复合材料相对密度和硬度[40]

    Table  2   Relative density and hardness of the spark plasma sintered B4C‒SiC composites at 1750 ℃[40]

    试样 相对密度 / % 硬度 / GPa
    B4C+5%SiC(反应烧结) 97.7 35.0±0.7
    B4C+10%SiC(反应烧结) 93.8 34.5±0.7
    B4C+15%SiC(反应烧结) 91.2 33.1±0.7
    B4C+20%SiC(反应烧结) 88.3 32.1±0.7
    B4C+5%SiC 98.0 34.4±0.5
    B4C+10%SiC 98.0 33.4±0.3
    B4C+15%SiC 97.8 31.1±0.5
    B4C+5%SiC+5%Y2O3 98.3 35.3±0.4
    B4C+10%SiC+5%Y2O3 98.8 34.4±0.4
    B4C+15%SiC+5%Y2O3 98.2 33.0±0.6
    下载: 导出CSV
  • [1]

    Suri A K, Subramanian C, Sonber J K, et al. Synthesis and consolidation of boron carbide: a review. Int Mater Rev, 2013, 55(1): 4

    [2]

    Conrad H. Electroplasticity in metals and ceramics. Mater Sci Eng A, 2000, 287(2): 276 DOI: 10.1016/S0921-5093(00)00786-3

    [3]

    Ghosh S, Chokshi A H, Lee P, et al. A huge effect of weak DC electrical fields on grain growth in zirconia. J Am Ceram Soc, 2009, 92(8): 1856 DOI: 10.1111/j.1551-2916.2009.03102.x

    [4]

    Gao H, Asel T J, Cox J W, et al. Native point defect formation in flash sintered ZnO studied by depth-resolved cathodoluminescence spectroscopy. J Appl Phys, 2016, 120(10): 1342

    [5]

    Mclaren C, Heffner W, Tessarollo R, et al. Electric field-induced softening of alkali silicate glasses. Appl Phys Lett, 2015, 107(18): 184101 DOI: 10.1063/1.4934945

    [6]

    Zhang Z H, Liu Z F, Lu J F, et al. The sintering mechanism in spark plasma sintering—Proof of the occurrence of spark discharge. Scr Mater, 2014, 81: 56 DOI: 10.1016/j.scriptamat.2014.03.011

    [7]

    Langer J, Hoffmann M J, Guillon O. Electric field-assisted sintering and hot pressing of semiconductive zinc oxide: A comparative study. Int J Appl Ceram Technol, 2011, 94(8): 2344

    [8]

    Langer J, Hoffmann M J, Guillon O. Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina. Acta Mater, 2009, 57(18): 5454 DOI: 10.1016/j.actamat.2009.07.043

    [9]

    Langer J, Hoffmann M J, Guillon O. Electric field-assisted sintering in comparison with the hot pressing of yttria-stabilized zirconia. J Am Ceram Soc, 2011, 94(1): 24 DOI: 10.1111/j.1551-2916.2010.04016.x

    [10]

    Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci, 2006, 41(3): 763 DOI: 10.1007/s10853-006-6555-2

    [11]

    Stanciu L A, Kodash V Y, Groza J R. Effects of heating rate on densification and grain growth during field-assisted sintering of α-Al2O3 and MoSi2 powders. Metall Mater Trans A, 2001, 32(10): 2633 DOI: 10.1007/s11661-001-0053-6

    [12]

    Anselmi-Tamburini U, Garay J E, Munir Z A, et al. Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. J Mater Res, 2004, 19(11): 3255 DOI: 10.1557/JMR.2004.0423

    [13]

    Chen D J, Mayo M J. Rapid rate sintering of nanocrystalline ZrO2-3 mol% Y2O3. J Am Ceram Soc, 1996, 79(4): 906 DOI: 10.1111/j.1151-2916.1996.tb08524.x

    [14]

    Vanmeensel K, Laptev A, Hennicke J, et al. Modelling of the temperature distribution during field assisted sintering. Acta Mater, 2005, 53(16): 4379 DOI: 10.1016/j.actamat.2005.05.042

    [15]

    Zhang M, Yuan T, Li R, et al. Densification mechanisms and microstructural evolution during spark plasma sintering of boron carbide powders. Ceram Int, 2018, 44(4): 3571 DOI: 10.1016/j.ceramint.2017.11.061

    [16]

    Hayun S, Kalabukhov S, Ezersky V, et al. Microstructural characterization of spark plasma sintered boron carbide ceramics. Ceram Int, 2010, 36(2): 451 DOI: 10.1016/j.ceramint.2009.09.004

    [17]

    Belon R, Antou G, Pradeilles N, et al. Mechanical behaviour at high temperature of spark plasma sintered boron carbide ceramics. Ceram Int, 2017, 43(8): 6631 DOI: 10.1016/j.ceramint.2017.02.053

    [18]

    Roumiguier L, Jankowiak A, Pradeilles N, et al. Mechanical properties of submicronic and nanometric boron carbides obtained by spark plasma sintering: Influence of B/C ratio and oxygen content. Ceram Int, 2019, 45(8): 9912 DOI: 10.1016/j.ceramint.2019.02.033

    [19]

    Réjasse F, Georges M, Pradeilles N, et al. Influence of chemical composition on mechanical properties of spark plasma sintered boron carbide monoliths. J Am Ceram Soc, 2018, 101(9): 3767 DOI: 10.1111/jace.15707

    [20]

    Badica P, Grasso S, Borodianska H, et al. Tough and dense boron carbide obtained by high-pressure (300 MPa) and low-temperature (1600 ℃) spark plasma sintering. J Ceram Soc Jpn, 2014, 122(1424): 271 DOI: 10.2109/jcersj2.122.271

    [21]

    Vasylkiv O, Borodianska H, Badica P, et al. High hardness BaCb-(BxOy/BN) composites with 3D mesh-like fine grain-boundary structure by reactive spark plasma sintering. J Nanosci Nanotechnol, 2012, 12(2): 959 DOI: 10.1166/jnn.2012.5875

    [22]

    Alexander R, Murthy T S R C, Vasanthakumar K, et al. In-situ synthesis and densification of boron carbide and boron carbide-graphene nanoplatelet composite by reactive spark plasma sintering. Ceram Int, 2018, 44(17): 21132 DOI: 10.1016/j.ceramint.2018.08.154

    [23]

    Moskovskikh D O, Paramonov K A, Nepapushev A A, et al. Bulk boron carbide nanostructured ceramics by reactive spark plasma sintering. Ceram Int, 2017, 43(11): 8190 DOI: 10.1016/j.ceramint.2017.03.145

    [24]

    Moshtaghioun B M, García D G, Domínguez-Rodríguez A. High-temperature plastic deformation of spark plasma sintered boron carbide-based composites: The case study of B4C–SiC with/without graphite (g). J Eur Ceram Soc, 2016, 36(5): 1127 DOI: 10.1016/j.jeurceramsoc.2015.12.016

    [25]

    Wakai F. Step model of solution-precipitation creep. Acta Metall Mater, 1994, 42(4): 1163 DOI: 10.1016/0956-7151(94)90133-3

    [26]

    Chen M, Yin Z, Yuan J, et al. Microstructure and properties of a graphene platelets toughened boron carbide composite ceramic by spark plasma sintering. Ceram Int, 2018, 44(13): 15370 DOI: 10.1016/j.ceramint.2018.05.188

    [27]

    Hu L, Wang W, He Q, et al. Preparation and characterization of reduced graphene oxide-reinforced boron carbide ceramics by self-assembly polymerization and spark plasma sintering. J Eur Ceram Soc, 2020, 40(3): 612 DOI: 10.1016/j.jeurceramsoc.2019.10.036

    [28]

    Moshtaghioun B M, Ortiz A L, Gómez-García D, et al. Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition. J Eur Ceram Soc, 2013, 33(8): 1395 DOI: 10.1016/j.jeurceramsoc.2013.01.018

    [29]

    Ye F, Hou Z, Zhang H, et al. Densification and mechanical properties of spark plasma sintered B4C with Si as a sintering aid. J Am Ceram Soc, 2010, 93(10): 2956 DOI: 10.1111/j.1551-2916.2010.03931.x

    [30]

    Rehman S S, Ji W, Khan S A, et al. Microstructure and mechanical properties of B4C densified by spark plasma sintering with Si as a sintering aid. Ceram Int, 2015, 41(1): 1903 DOI: 10.1016/j.ceramint.2014.09.115

    [31]

    Ma L, Xie K Y, Toksoy M F, et al. The effect of Si on the microstructure and mechanical properties of spark plasma sintered boron carbide. Mater Charact, 2017, 134: 274 DOI: 10.1016/j.matchar.2017.11.010

    [32]

    Rehman S S, Ji W, Khan S A, et al. Microstructure and mechanical properties of B4C based ceramics with Fe3Al as sintering aid by spark plasma sintering. J Eur Ceram Soc, 2014, 34(10): 2169 DOI: 10.1016/j.jeurceramsoc.2014.02.014

    [33]

    Zhang M, Li R, Yuan T, et al. Effect of low-melting-point sintering aid on densification mechanisms of boron carbide during spark plasma sintering. Scr Mater, 2019, 163: 34 DOI: 10.1016/j.scriptamat.2018.12.036

    [34]

    Ji W, Todd R I, Wang W, et al. Transient liquid phase spark plasma sintering of B4C-based ceramics using Ti‒Al intermetallics as sintering aid. J Eur Ceram Soc, 2016, 36(10): 2419 DOI: 10.1016/j.jeurceramsoc.2016.03.028

    [35]

    Ortiz A L, Galán C A, Borrero-López O, et al. Highly sliding-wear resistant B4C composites fabricated by spark-plasma sintering with Ti–Al additives. Scr Mater, 2020, 177: 91 DOI: 10.1016/j.scriptamat.2019.10.014

    [36]

    Buyuk B, Tugrul A B, Cengiz M, et al. Radiation shielding properties of spark plasma sintered boron carbide-aluminium composites. Acta Phys Pol A, 2015, 128(2B): B

    [37]

    Liu Y, Li Z, Peng Y, et al. Effect of sintering temperature and TiB2 content on the grain size of B4C‒TiB2 composites. Mater Today Commun, 2020, 23(1): 100875

    [38]

    Liu Y, Wu X, Liu M, et al. Microstructure and mechanical properties of B4C–TiB2–SiC composites fabricated by spark plasma sintering. Cerami Int, 2020, 46(3): 3793 DOI: 10.1016/j.ceramint.2019.10.102

    [39]

    Sun J, Niu B, Ren L, et al. Densification and mechanical properties of boron carbide prepared via spark plasma sintering with cubic boron nitride as an additive. J Eur Ceram Soc, 2020, 40(4): 1103 DOI: 10.1016/j.jeurceramsoc.2019.12.047

    [40]

    Sahin F C, Apak B, Akin I, et al. Spark plasma sintering of B4C–SiC composites. Solid State Sci, 2012, 14(11-12): 1660 DOI: 10.1016/j.solidstatesciences.2012.05.037

    [41]

    Firshtman N, Kalabukhov S, Frage N. Effect of boron carbide composition on its densification behavior during spark plasma sintering (SPS). Ceram Int, 2018, 44(17): 21842 DOI: 10.1016/j.ceramint.2018.08.291

    [42]

    Zhang F, Fu Z Y, Zhang J Y, et al. Fast densification of B4C ceramics with Al2O3 as a sintering aid by spark plasma sintering. Mater Sci Forum, 2009, 620-622: 395 DOI: 10.4028/www.scientific.net/MSF.620-622.395

    [43]

    Xie K Y, Toksoy M F, Kuwelkar K, et al. Effect of alumina on the structure and mechanical properties of spark plasma sintered boron carbide. J Am Ceram Soc, 2014, 97(11): 3710 DOI: 10.1111/jace.13178

    [44]

    Song Q, Zhang Z H, Hua Z Y, et al. Microstructure and mechanical properties of super-hard B4C ceramic fabricated by spark plasma sintering with (Ti3SiC2+Si) as sintering aid. Ceram Int, 2019, 45(7): 8790 DOI: 10.1016/j.ceramint.2019.01.204

    [45]

    Yin S P, Zhang Z H, Cheng X W, et al. Spark plasma sintering of B4C‒TiB2‒SiC composite ceramics using B4C, Ti3SiC2 and Si as starting materials. Ceram Int, 2018, 44(17): 21626 DOI: 10.1016/j.ceramint.2018.08.245

图(14)  /  表(2)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  244
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-10
  • 录用日期:  2020-12-10
  • 网络出版日期:  2022-12-15
  • 刊出日期:  2022-12-27

目录

/

返回文章
返回