高级检索

BaTiO3基正温度系数热敏陶瓷研究现状及应用

Research status and application of BaTiO3-based positive temperature coefficient thermal ceramics

  • 摘要: 正温度系数(positive temperature coefficient,PTC)热敏陶瓷是一类关键电子功能陶瓷,因其优异的特性在加热元件、传感器、电路保护器、温度控制器、电器消磁等领域都有广泛的应用。BaTiO3作为主体材料制备的正温度系数热敏电阻(positive temperature coefficient thermistor,PTCR)是目前用量较大的一类正温度系数元件,具有重要的研究意义。本文阐述了正温度系数热敏材料的分类及其优缺点,介绍了正温度系数效应、热敏机理及BaTiO3基正温度系数材料的半导化原理,综述了BaTiO3基正温度系数热敏陶瓷国内外研究现状,分析了移峰剂、施主掺杂、受主掺杂、烧结工艺等因素对BaTiO3基正温度系数热敏陶瓷的影响,总结了正温度系数热敏元器件的应用原理及其在相关领域的应用,并对正温度系数热敏陶瓷的无铅化进行了展望。

     

    Abstract: Positive temperature coefficient (PTC) thermal ceramics are a kind of key electronic functional ceramics, which are widely used in heating elements, sensors, circuit protectors, temperature controllers, and electrical demagnetization, because of the excellent characteristics. The positive temperature coefficient thermistor (PTCR) prepared by using BaTiO3 as the host materials is a type of PTC elements with a large amount at present, showing the important research significance. The classification and advantages-disadvantages of the PTC heat-sensitive materials were elaborated in the article, the PTC effect, heat-sensitive mechanism, and semiconductivity principle of the BaTiO3-based PTC materials were introduced, and the research status of the BaTiO3-based PTC heat-sensitive ceramics was summarized at home and abroad. The effects of peak shifting agent, donor doping, acceptor doping, and sintering process on the BaTiO3-based PTC thermal ceramics were analyzed. The application principle and application of the PTC thermal components were summarized in the related fields, and the lead-free PTC thermal ceramics were looked forward.

     

/

返回文章
返回