-
摘要:
锂离子电池商用负极材料石墨比容量低,难以满足市场需求,金属有机骨架材料(metal-organic framework materials,MOFs)具有可调控的结构、较大的表面积和可调节的孔径,可用作下一代电化学储能器件,引起广泛研究。本文综述了金属(Fe、Co、Zn、Mn、Cu)基金属有机骨架及其衍生物的合成,重点介绍了以金属有机骨架材料为前驱体制备过渡金属氧化物(transition metal oxide,TMO)/C作为锂离子电池负极材料的研究进展,并对其发展方向进行了展望。
Abstract:The graphite as the commercial anode material for lithium-ion batteries shows the low specific capacity, which is difficult to meet the market demand. The metal-organic framework materials (MOFs) have the tunable structure, large surface area, and adjustable pore size, which can be used as the next generation of electrochemical energy storage devices, causing the extensive research. The synthesis of the metal (Fe, Co, Zn, Mn, Cu)-based metal organic frameworks and the derivatives were introduced in this paper, the research progress on the preparation of transition metal oxide (TMO)/C as the anode materials for lithium-ion batteries was focused, using MOFs as the precursors, and the development direction was prospected.
-
烧结是将粉末或粉末压坯加热到低于其基本成分熔点温度,并在适当的气氛或真空条件下,以一定的方法和速度冷却到室温的过程。烧结使粉末颗粒之间发生粘结,压坯中颗粒相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,通过物质的传递,总体积收缩,密度增加,烧结体的强度增加,最后成为具有某种显微结构的致密多晶烧结体,最终获得所需力学性能的制品或材料。烧结是粉末冶金工艺中的一个重要环节,对最终产品质量有着决定性影响。烧结产生的缺陷及问题难以通过后续工艺调节或弥补,所以深入细致地对烧结行为进行研究探索是十分必要的[1–3]。
钼(Mo)是元素周期表中VIB族元素,原子序数42,原子量95.94。高熔点与高沸点是Mo的显著特点之一,其熔点为2620 ℃,仅次于C、W、Re、Ta和Os。由于Mo的熔点高,属难熔金属,Mo及Mo合金主要采用粉末冶金方法制备。首先获得高纯度Mo粉,再加入所需合金元素粉末,经油压机模压或冷等静压成形,最终经低于熔点的温度烧结成Mo合金制品。在生产实践中,科研人员对原料Mo粉、烧结后的Mo产品性能研究较多,对烧结过程,仅限于记录烧结温度、气氛、升温保温时间等工艺参数,对Mo合金本身在烧结过程中的变化研究较少。本文采用原位测量法,对比研究了放电等离子烧结与真空热压烧结法制备Mo–30W合金的烧结行为,更加准确地掌握Mo合金的烧结收缩和致密化规律。
1. 实验材料及方法
实验采用商用Mo粉和W粉,Mo粉费氏粒度为3.5 μm,W粉费氏粒度为3.0 μm。经过混料、压制成形,制备成ϕ20 mm×15 mm试样,分别使用放电等离子烧结(spark plasma sintering,SPS)设备和真空热压设备进行烧结实验,压力设定为35 MPa。采用排水法测试试样烧结密度,使用扫描电子显微镜(scanning electron microscope,SEM)观察试样断口形貌。图1为研究Mo合金烧结行为的实验系统,图中Mo合金样品的直径与模具阴模孔径相同,烧结过程中保持不变,上模冲、下模冲位置固定。烧结开始时微加压力于样品,行程反馈清零,上下模冲压力保持恒定。当系统开始加热时,样品轴向的变化通过上模冲实时表现出来,精度为微米级。
实验主要目的是通过样品在不同温度下的轴向微小变化来反映Mo合金在烧结过程中的行为,这种直观反映Mo合金在高温烧结过程中的变化在行业中尚未发现相关研究信息。直观研究Mo合金烧结变化更加有助于深入掌握Mo合金的烧结规律,为Mo合金产品质量提升和行业进步产生积极的推动作用。
2. 结果与讨论
2.1 Mo–30W合金放电等离子烧结轴向收缩变化
根据石墨模具内径大小确定Mo–30W合金样品直径为20 mm、高度为15 mm。将试样装入模具,包好石墨毡保温,置于上下模冲的中心位置。调整上下模冲距离,使油缸压力稳定在0.3 MPa,将此位置作为试样零点。关闭炉门,抽真空。在真空度达到10 Pa以下时,调节电流,试样开始升温,记录试样轴向伸缩试验数据。
图2为Mo–30W合金试样轴向伸缩和烧结温度随烧结时间的变化趋势。由图可知,温度曲线从室温开始上升,20 min后温度上升到1500 ℃,随后上升速度变缓,基本进入保温阶段。44 min时断电随炉自然降温,68 min时温度已接近室温。在起始3 min,Mo–30W合金试样轴向有微小收缩;随后随温度升高试样开始膨胀,在约13 min、1200 ℃膨胀达到最大值;之后开始收缩,且收缩速度较快;30 min、1600 ℃时试样收缩趋势变缓。44 min、1600 ℃时断电降温开始有明显较大的收缩,温度接近室温时,收缩基本停止。
一般认为粉末冶金的烧结过程按温度–时间关系大致可划分黏结阶段、烧结颈长大及黏塑性流动阶段、闭孔隙球化和缩小阶段等三个界限不十分明显的阶段。黏结阶段属烧结初期,颗粒间原始接触点的原子由于温度升高、振幅加大、扩散加剧,使颗粒间的接触由点扩展到面。在这一阶段中颗粒内的晶粒不发生变化,颗粒外形也基本未变,整个坯体不发生明显的收缩,密度增加极微[4–7]。
Mo–30W合金属于无限固溶[8],在1200 ℃之前整个坯体不但没有发生收缩,反而有明显的膨胀现象,轴向膨胀量约为6%左右。这是由于原子温度升高,振幅加大颗粒体积膨胀,反映在宏观就是坯体有明显的膨胀现象。之前坯体在烧结过程中难以进行直接观测,所以不能深入了解坯体烧结时的变化规律。
在1200~1600 ℃为烧结颈长大及黏塑性流动阶段,整个坯体收缩显著,而且收缩速度较快,与理论认识相符。主要是由于孔隙大量消失使坯体迅速收缩。在烧结颈长大及黏塑性流动阶段,原子向颗粒结合面大量迁移使烧结颈长大,颗粒间距缩小,形成连续的孔隙网络;同时由于晶粒长大,晶界越过孔隙移动,被晶界扫过的地方,孔隙大量消失。这一阶段坯体收缩、密度和强度显著增加。
如图2所示,整个坯体在1600 ℃保温一段时间后,收缩趋势变缓,收缩缓慢。相对于原始坯体,试样轴向收缩量约为6%左右,相对于膨胀最大值,试样轴向收缩量可达12%左右。这是因为在闭孔隙球化和缩小阶段,多数孔隙被完全分隔,闭孔数量大为增加,孔隙形状趋近于球形并不断缩小。在这个阶段,整个坯体收缩缓慢,主要是靠小孔的消失和孔隙的减少来实现。在降温开始后,整个坯体又产生一个较大的收缩。在降温阶段,整个坯体已被烧结呈现金属化,具有明显的金属特征所以随着温度的降低会产生较大的收缩。降温完成后,整个烧结体收缩率可达15%以上,这与中频烧结类似合金的收缩率基本相符。
通过实验及分析可以确定,Mo–30W合金样品烧结规律为:在烧结升温开始之时,样品有微小收缩,随后随温度升高,试样开始膨胀;温度升到一定程度(1200 ℃)时,样品膨胀达到最大值,之后开始收缩,且收缩速度较快;随着温度继续升高,样品收缩趋势变缓;随着降温的开始,样品有明显较大的收缩,在温度接近室温时,收缩基本停止。
2.2 Mo–30W合金真空热压烧结轴向收缩变化
图3为Mo–30W合金试样经真空热压烧结后,在烧结温度1600 ℃时,试样轴向伸缩率随时间的变化趋势。当烧结温度一定,随着保温时间的延长,Mo–30W合金样品的收缩率逐渐增大。在保温180 min时,收缩率达到最大值9%,此时样品的烧结完成,对应的相对密度也达最大值89.98%。
真空热压烧结的加热方式为电阻辐射加热,在整个烧结过程中,石墨模具、Mo–30W合金样品及真空热压烧结炉腔体的温度基本一致,石墨模具和Mo–30W合金样品一同收缩,所以上模冲的位移变化并不仅代表Mo–30W合金的位移变化。在放电等离子烧结过程中,烧结的热量主要作用在Mo–30W合金坯料上,整个烧结腔体的温度远低于Mo–30W合金坯料的温度,所以上模冲的位移变化能代表Mo–30W合金的位移变化。
2.3 Mo–30W合金样品烧结质量分析
放电等离子烧结是一种比较特殊的烧结方式,样品的烧结质量对本文提出的Mo–30W合金样品烧结规律是一个重要条件,如果烧结质量不好,其烧结规律也不具备普遍意义,从而失去参考价值。样品的烧结密度是判断烧结质量的关键指标,以下是采用排水法测出的样品烧结后的密度,结果如表1所示。
表 1 Mo–30W合金样品烧结密度Table 1. Sintering density of the Mo–30W alloys烧结方法 压坯密度 / (g·cm−3) 压坯相对密度 / % 烧结密度 / (g·cm−3) 烧结相对密度 / % 放电等离子烧结 8.91 69.70 11.89 93.00 真空热压烧结 8.90 69.62 11.50 89.98 从表1中数据可以看出,Mo–30W合金样品经放电等离子烧结后密度有大幅提高,并且相对密度达到93%,可以判断基本达到烧结状态。Mo–30W合金样品原始高度为15 mm,烧结过程中样品直径受限,基本没有产生变化,降温后样品高度收缩3 mm,收缩率达到20%,相对于实测样品密度升高约25%,两者之间相互吻合。Mo–30W合金经真空热压烧结后,样品相对密度达到89.98%,样品原始高度为15 mm,烧结过程中样品直径受限,基本没有产生变化,降温后样品高度收缩2 mm,收缩率达到13.33%。经对比可发现,经放电等离子烧结Mo–30W合金的相对密度高于经真空热压烧结Mo–30W合金的相对密度。放电等离子烧结与真空热压烧结法均为加压和加热同时进行,但二者加热方式完全不同,真空热压烧结法是采用电阻辐射加热的方式实现烧结,放电等离子烧结是利用直流脉冲电流直接通电烧结的加压烧结方式,通过调节脉冲直流电的大小来控制升温速率和烧结温度。直流脉冲电流的主要作用是产生高温等离子体、放电冲击压力、焦耳热和电场扩散作用,同时放电效应能够清除粉末颗粒表面及内部残留的气体,清洁粉末颗粒表面,提高了颗粒的烧结能力[9–12]。放电等离子烧结与真空热压烧结相比,能够在更短的时间内获得高致密的材料。
图4为Mo–30W合金样品经放电等离子烧结和真空热压烧结后的扫描电子显微形貌,从图中可以看出,经放电等离子烧结的样品虽然存在较多的孔洞,但晶粒间界线清晰、平直,与正常Mo合金烧结微观形貌相似,说明样品已产生金属化,已基本完成烧结过程,晶粒大小约30 μm。样品中孔洞较多是放电等离子烧结特点决定,放电等离子烧结是一种快速烧结方式[13–15],升温速度快,烧结时间较短,晶体内孔洞虽然已经产生了圆化、迁移、融合,但还没有完全收缩消除,这也印证了所测样品相对密度只有93%的结果。经真空热压烧结的样品晶粒之间结合较紧密,晶界处存在孔洞,晶粒大小约50 μm。
通过对Mo–30W合金样品的密度和形貌的分析,发现采用放电等离子烧结方法,Mo–30W合金样品产生明显收缩,完成了基本的烧结行为,具备粉末冶金烧结过程的全部特点。随后对纯Mo、Mo–Cu合金、MoS2等不同的样品进行测试发现,不论是纯金属还是合金,或者是非金属都具有相似的烧结行为,这说明本文所探究的粉末冶金烧结行为具有普遍的适用性。
3. 结论
(1)采用放电等离子烧结制备Mo–30W合金时,在烧结初期,1200 ℃之前坯体不但没有收缩,反而有较为明显的膨胀现象,膨胀最大可达6%。
(2)采用放电等离子烧结制备Mo–30W合金时,Mo–30W合金样品粉末冶金烧结基本规律为:在烧结升温开始时,样品有微小收缩,并随温度升高试样开始膨胀;温度升到一定程度(如1200 ℃)时,样品膨胀达到最大值,随后开始收缩,且收缩速度较快;随着温度继续升高,样品收缩趋势变缓;随着降温的开始,样品有明显较大的收缩,当温度接近室温时,收缩基本停止。
(3)使用放电等离子烧结设备可以对Mo–30W合金样品进行烧结,其相对密度可达到93%,基本完成烧结。
(4)在直观反映Mo–30W合金烧结过程中的收缩变化规律方面,放电等离子烧结优于真空热压烧结。
-
图 1 前驱体GO/ZIF-67(a)和G/Co3O4复合材料(b)显微形貌、G/Co3O4和Co3O4电极在100 mA·g−1电流密度下前三圈放电/充电曲线(c)以及在200 mA·g−1的循环图(d)[17]
Figure 1. Microstructures of GO/ZIF-67 precursor (a) and G/Co3O4 (b), the discharge/charge curves of G/Co3O4 and Co3O4 at the current density of 100 mA·g−1 for the first three cycles (c), and the cycling properties of G/Co3O4 and Co3O4 at 200 mA·g−1 (d)[17]
图 3 空心多孔ZnO/C制备工艺流程(a)、空心多孔ZnO/C显微形貌(b)以及在电流密度为100 mA·g−1时空心多孔ZnO/C、空心多孔ZnO和商用ZnO的循环性能(c)[20]
Figure 3. Schematic diagram of hollow porous ZnO/C preparation process (a), microstructure of hollow porous ZnO/C (b), and cycling properties of hollow porous ZnO/C, hollow porous ZnO, and commercial ZnO at 100 mA·g−1 (c)[20]
表 1 MOFs衍生锂离子电池负极材料
Table 1 MOFs-derived anode materials for lithium-ion batteries
MOFs前驱体 产物 电流密度 / (mA·g−1) 可逆容量 / (mA·h·g−1) 循环次数 参考文献 Co-MOF Co3O4/C 200 1052 60 [15] Co-MOF Co3O4/C 1000 601.0 500 [16] ZIF-67 G/Co3O4 200 714.0 200 [17] Fe-MOF C-Fe3O4 100 975.0 50 [18] Fe-ZIF Fe2O3@N-C 100 861.0 100 [19] MOF-5 ZnO/C 100 750.0 100 [20] Ppy-ZIF-8 ZnO/C 250 526.0 500 [21] Zn-BTC ZnO/C 100 919.0 100 [22] ZnO@ZIF-8 ZnO/C 2000 351.0 — [23] MOF-5 ZnO@C/CNT 100 758.0 100 [24] Mn-BTC MnO@C 3825 596.3 1000 [26] Mn-PBI MnO/C−N 300 1085.0 100 [27] Mn-BDC MnO/C@rGO 100 1536.4 100 [29] Cu-MOF CuOx-rGO 200 1490.0 220 [31] Cu-BTC CuO@C 100 1024.0 100 [32] [Cu(BTC)2]n-MOF CuO/C 100 510.5 200 [33] Cu-MOF CuO/C 100 789.0 200 [34] Cu-MOF CuO@C 1000 410.0 1000 [35] MIL-125@ZIF-67 Co3O4/TiO2 1000 838.6 600 [36] ZIF-67 Co3O4@Co3V2O8 100 948.0 100 [37] ZIF-67 Co3O4@TiO2 100 1057.0 100 [38] MOF-74-FeCo Co3O4-CoFe2O4 100 940.0 80 [39] ZnCo-MOF ZnO/ZnCo2O4/C 500 669.0 250 [40] GO/Zn-Co-ZIF/Ni rGO/ZnCo2O4-ZnO-C/Ni 100 1184.4 150 [42] -
[1] Xu G, Nie P, Dou H, et al. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater Today, 2017, 20(4): 191 DOI: 10.1016/j.mattod.2016.10.003
[2] Yu S H, Lee S H, Lee D J, et al. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small, 2016, 12(16): 2146 DOI: 10.1002/smll.201502299
[3] Kim T, Song W T, Son D Y, et al. Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A, 2019, 7(7): 2942 DOI: 10.1039/C8TA10513H
[4] Zhao R, Liang Z B, Zou R Q, et al. Metal-organic frameworks for batteries. Joule, 2018, 2(11): 2235 DOI: 10.1016/j.joule.2018.09.019
[5] Xie X C, Huang K J, Wu X. Metal-organic framework derived hollow materials for electrochemical energy storage. J Mater Chem A, 2018, 6(16): 6754 DOI: 10.1039/C8TA00612A
[6] Cook T R, Zheng Y R, Stang P J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem Rev, 2013, 113(1): 734 DOI: 10.1021/cr3002824
[7] Mehta J, Bhardwaj N, Bhardwaj S K, et al. Recent advances in enzyme immobilization techniques metal-organic frameworks as novel substrates. Coord Chem Rev, 2016, 322: 30 DOI: 10.1016/j.ccr.2016.05.007
[8] Yaghi O M, Li H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc, 1995, 117: 10401 DOI: 10.1021/ja00146a033
[9] Li B, Wen H, Cui Y, et al. Emerging multifunctional metal-organic framework materials. Adv Mater, 2016, 28(40): 8819 DOI: 10.1002/adma.201601133
[10] Li T, Bai Y L, Wang Y, et al. Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries. Coord Chem Rev, 2020, 410: 213
[11] Xia W, Mahmood A, Zou R, et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci, 2015, 8(7): 1837 DOI: 10.1039/C5EE00762C
[12] Zou F, Chen Y M, Liu K W, et al. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano, 2016, 10(1): 377 DOI: 10.1021/acsnano.5b05041
[13] Zheng M B, Tang H, Li L L, et al. Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci, 2018, 5(3): 1700592 DOI: 10.1002/advs.201700592
[14] Cai Z X, Wang Z L, Kim J, et al. Hollow functional materials derived from metal-organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv Mater, 2019, 31(11): 1804903.1
[15] Tian D, Zhou X L, Zhang Y H, et al. MOF-derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries. Inorg Chem, 2015, 54(17): 8159 DOI: 10.1021/acs.inorgchem.5b00544
[16] Ding Y C, Hu L H, He D C, et al. Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery. Chem Eng J, 2020, 380: 122489 DOI: 10.1016/j.cej.2019.122489
[17] Qu Q, Gao T, Zheng H, et al. Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries. Carbon, 2015, 92: 119 DOI: 10.1016/j.carbon.2015.03.061
[18] Li M, Wang W, Yang M, et al. Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe-MOF as high-performance anode materials for lithium-ion batteries. RSC Adv, 2015, 5(10): 7356 DOI: 10.1039/C4RA11900B
[19] Chen Y, Zheng L, Fu Y, et al. MOF-derived Fe3O4/carbon octahedral nanostructures with enhanced performance as anode materials for lithium-ion batteries. RSC Adv, 2016, 6(89): 85917 DOI: 10.1039/C6RA19041C
[20] Song Y, Chen Y, Wu J, et al. Hollow metal organic frameworks-derived porous ZnO/C nanocages as anode materials for lithium-ion batteries. J Alloys Compd, 2017, 694: 1246 DOI: 10.1016/j.jallcom.2016.10.110
[21] Zhang J, Chu R, Chen Y, et al. MOF-derived transition metal oxide encapsulated in carbon layer as stable lithium ion battery anodes. J Alloys Compd, 2019, 797: 83 DOI: 10.1016/j.jallcom.2019.04.162
[22] Yang T, Liu Y, Huang Z, et al. In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries. J Alloys Compd, 2018, 735: 1079 DOI: 10.1016/j.jallcom.2017.11.125
[23] Fu Y, Zhong B, Chen Y, et al. Porous ZnO@C core–shell nanocomposites as high performance electrode materials for rechargeable lithium-ion batteries. J Porous Mater, 2016, 24(3): 613
[24] Yue H, Shi Z, Wang Q, et al. In situ preparation of cobalt doped ZnO@C/CNT composites by the pyrolysis of a cobalt doped MOF for high performance lithium ion batteries. RSC Adv, 2015, 5(92): 75653 DOI: 10.1039/C5RA14271G
[25] Hou C, Tai Z, Zhao L, et al. High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J Mater Chem A, 2018, 6(20): 9723 DOI: 10.1039/C8TA02863J
[26] Cui Z, Liu Q, Xu C, et al. A new strategy to effectively alleviate volume expansion and enhance the conductivity of hierarchical MnO@C nanocomposites for lithium ion batteries. J Mater Chem A, 2017, 5(41): 21699 DOI: 10.1039/C7TA05986H
[27] Niu J L, Hao G X, Lin J, et al. Mesoporous MnO/C-N nanostructures derived from a metal-organic framework as high-performance anode for lithium-ion battery. Inorg Chem, 2017, 56(16): 9966 DOI: 10.1021/acs.inorgchem.7b01486
[28] Maiti S, Pramanik A, Mahanty S. Electrochemical energy storage in Mn2O3 porous nanobars derived from morphology-conserved transformation of benzenetricarboxylate-bridged metal–organic framework. Cryst Eng Comm, 2016, 18(3): 450 DOI: 10.1039/C5CE01976A
[29] Tian X M, Zhao D L, Meng W J, et al. Highly porous MnO/C@rGO nanocomposite derived from MnBDC@rGO as high-performance anode material for lithium ion batteries. J Alloys Compd, 2019, 792: 487 DOI: 10.1016/j.jallcom.2019.04.027
[30] Xu Y H, Jian G Q, Zachariah M R, et al. Nano-structured carbon-coated CuO hollow spheres as stable and high rate anodes for lithium-ion batteries. J Mater Chem A, 2013, 1: 15486 DOI: 10.1039/c3ta13698a
[31] Ramaraju B, Li C H, Prakash S, et al. Metal–organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications. Chem Comm, 2016, 52(5): 946 DOI: 10.1039/C5CC07621H
[32] Xu Y, Chu K, Li Z, et al. Porous CuO@C composite as high-performance anode materials for lithium-ion batteries. Dalton Trans, 2020, 49(33): 11597 DOI: 10.1039/D0DT02493G
[33] Yin H, Yu X X, Li Q W, et al. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J Alloys Compd, 2017, 706: 97 DOI: 10.1016/j.jallcom.2017.02.215
[34] Peng H J, Hao G X, Chu Z H, et al. Mesoporous spindle-like hollow CuO/C fabricated from a Cu-based metal-organic framework as anodes for high-performance lithium storage. J Alloys Compd, 2017, 727: 1020 DOI: 10.1016/j.jallcom.2017.08.231
[35] Kang M S, Lee D H, Lee K J, et al. Porosity- and content-controlled metal/metal oxide/metal carbide@carbon (M/MO/MC@C) composites derived from MOFs: mechanism study and application for lithium-ion batteries. New J Chen, 2018, 42(23): 18678 DOI: 10.1039/C8NJ04919J
[36] Yang X, Wang Y, Hu Y Y, et al. Interior supported hierarchical TiO2@Co3O4 derived from MOF-on-MOF architecture with enhanced electrochemical properties for lithium storage. Chem Electro Chem, 2019, 6(14): 3657
[37] Lu Y, Yu L, Wu M H, et al. Construction of complex Co3O4@Co3V2O8 hollow structures from metal-organic frameworks with enhanced lithium storage properties. Adv Mater, 2018, 30(1): 1702875 DOI: 10.1002/adma.201702875
[38] Ding H, Zhang X K, Fan J Q, et al. MOF-templated synthesis of Co3O4@TiO2 hollow dodecahedrons for high-storage-density lithium-ion batteries. ACS Omega, 2019, 4(8): 13241 DOI: 10.1021/acsomega.9b01405
[39] Zhong M, Yang D H, Kong L J, et al. Bimetallic metal-organic framework derived Co3O4-CoFe2O4 composites with different Fe/Co molar ratios as anode materials for lithium ion batteries. Dalton Trans, 2017, 46(45): 15947 DOI: 10.1039/C7DT03047A
[40] Ge X, Li Z, Wang C, et al. Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery. ACS Appl Mater Interfaces, 2015, 7(48): 26633 DOI: 10.1021/acsami.5b08195
[41] Huang G, Yin D, Zhang F, et al. Yolk@shell or concave cubic NiO-Co3O4@C nanocomposites derived from metal-organic frameworks for advanced lithium-ion battery anodes. Inorg Chem, 2017, 56(16): 9794 DOI: 10.1021/acs.inorgchem.7b01296
[42] Li Z, Yin L. Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4-ZnO-C on nickel foam as anodes for high performance lithium ion batteries. J Mater Chem A, 2015, 3(43): 21569 DOI: 10.1039/C5TA05733G
-
期刊类型引用(1)
1. 陈昆昆,孟晗琪,杨阳. 致密铼粒的制备研究. 广州化工. 2024(17): 34-36 . 百度学术
其他类型引用(0)