高级检索

水热法制备纳米氧化镁

Preparation of nanometric magnesium oxide by hydrothermal method

  • 摘要: 以氯化镁与氨水为原料,聚乙二醇为分散剂,用水热法制备出纳米氧化镁。通过X射线衍射仪和扫描电子显微镜表征产物的晶体结构、显微形貌和颗粒尺寸,探讨了MgCl2和氨水的摩尔比、反应温度、反应时间对前驱体的影响。对前驱体进行差热分析,研究前驱体煅烧温度和煅烧时间对纳米MgO的影响。结果表明:当MgCl2和氨水的摩尔比为1.0:2.5,反应温度为200 ℃,反应时间为3.0 h,前驱体煅烧温度为600 ℃,煅烧时间为2.0 h时,得到的纳米MgO颗粒呈圆盘状,分散均匀,基本无团聚现象,颗粒直径约为100 nm,厚度最小约为10 nm。

     

    Abstract: Nanometric magnesium oxide was prepared by hydrothermal method using magnesium chloride and ammonia water as the raw materials and polyethylene glycol as the dispersant. The crystal structure, microstructure, and particle size of the products were characterized by X-ray diffraction and scanning electron microscopy. The effects of molar ratio of MgCl2 to ammonia, reaction temperature, and reaction time on the precursors were discussed, and the influences of calcination temperature and calcination time on the nanometric magnesium oxide were investigated by the differential thermal analysis of the precursors. The results show that, when the molar ratio of MgCl2 to ammonia is 1.0:2.5, the reaction temperature is 200 ℃, the reaction time is 3.0 h, the precursor calcination temperature is 600 ℃, and the calcination time is 2.0 h, the MgO nanoparticles obtained are found to be disc-like and uniformly dispersed without agglomeration, showing a particle diameter of about 100 nm and a thickness of about 10 nm.

     

/

返回文章
返回