高级检索

增材制造TiAl基合金的研究进展

王虎, 赵琳, 彭云, 王艳杰, 田志凌

王虎, 赵琳, 彭云, 王艳杰, 田志凌. 增材制造TiAl基合金的研究进展[J]. 粉末冶金技术, 2022, 40(2): 110-117. DOI: 10.19591/j.cnki.cn11-1974/tf.2020100009
引用本文: 王虎, 赵琳, 彭云, 王艳杰, 田志凌. 增材制造TiAl基合金的研究进展[J]. 粉末冶金技术, 2022, 40(2): 110-117. DOI: 10.19591/j.cnki.cn11-1974/tf.2020100009
WANG Hu, ZHAO Lin, PENG Yun, WANG Yan-jie, TIAN Zhi-ling. Research progress of TiAl-based alloys fabricated by additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(2): 110-117. DOI: 10.19591/j.cnki.cn11-1974/tf.2020100009
Citation: WANG Hu, ZHAO Lin, PENG Yun, WANG Yan-jie, TIAN Zhi-ling. Research progress of TiAl-based alloys fabricated by additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(2): 110-117. DOI: 10.19591/j.cnki.cn11-1974/tf.2020100009

增材制造TiAl基合金的研究进展

基金项目: 国家重点研发计划资助项目(2017YFB1103300);河北省高等学校科学技术研究项目(QN2020256);北华航天工业学院青年基金资助项目(KY202103)
详细信息
    通讯作者:

    赵琳: E-mail: hhnds@aliyun.com

  • 中图分类号: TG146.2

Research progress of TiAl-based alloys fabricated by additive manufacturing

More Information
  • 摘要: TiAl基合金具有优异的高温性能,是一种极具竞争力的新型轻质高温结构材料,在汽车、军工、航空航天等领域具有广阔的发展潜力和应用前景。然而,TiAl基合金室温脆性较大,成形困难,是阻碍其发展与应用的主要瓶颈之一。增材制造基于“离散+堆积”的成形思想,以激光、电子束、电弧等作为高能热源,通过熔化丝材或者粉末,逐层堆积实现零件的近净成形,是TiAl基合金最前沿、最具潜力的成形技术。本文主要概述了激光增材制造、电子束选区熔化、电弧增材制造TiAl基合金的研究进展,并展望了增材制造TiAl基合金的研究方向。
    Abstract: TiAl-based alloys have the excellent high-temperature properties as a highly competitive new lightweight high-temperature structural material, showing the broad development prospect and application potential in the automotive, military, aerospace, and other fields. However, because of the nature and inherent brittleness, the TiAl-based alloys are difficult to form, which inhibits the further development and the practical application. The additive manufacturing based on the forming idea of "discrete + accumulation" represents the most advanced and potential forming technology for the TiAl-based alloys, which uses the laser, electron beam, and arc as the high energy heat source to melt wires or powders and then stack them layer by layer. The research progress of TiAl-based alloys prepared by laser additive manufacturing, electron beam selective melting, and wire and arc additive manufacturing was summarized in this paper, and the future research direction of the TiAl-based alloys fabricated by additive manufacturing was prospected.
  • 金属陶瓷复合材料不仅具有金属材料良好的塑性和韧性,还具有陶瓷材料的高硬度和强耐磨[13],在航空航天、石油化工、能源开发等领域有着广泛的应用[46]。316L不锈钢是典型的奥氏体不锈钢,具有较高的强度、良好的塑韧性和耐蚀性[7]。随着现代工业的发展,高端工业领域对不锈钢材料的性能有更高要求,除了自身优异的性能,还需要具有高硬度、强耐磨、耐高温、抗压等性能[8],因此,在316L不锈钢基体中增加陶瓷增强相是一种很好的选择。Al2O3增强ZrO2(alumina reinforced zirconia,ARZ)陶瓷具有良好的韧性和强度,且与不锈钢热膨胀系数相接近,二者化学相容性较好,可作为一种陶瓷增强颗粒与316L不锈钢一起制备金属陶瓷复合材料。粉末冶金技术制备复合材料成本可控、工艺简单,且复合材料晶粒细小、均匀,陶瓷颗粒分散均匀性好,成分含量可调控,制备的复合材料综合了基体与增强体的优异性能[910],不但具有金属材料的塑性和韧性,还具有陶瓷材料硬度高[11]、耐磨性好等优点[1213]。本文采用粉末冶金技术制备了ARZ陶瓷颗粒增强316L不锈钢(316L不锈钢/ARZ)复合材料,重点研究ARZ体积分数对陶瓷颗粒分布的影响,以及对复合材料相对密度、硬度、摩擦磨损性能的影响,并讨论了复合材料的磨损机理,得出最佳ARZ陶瓷添加量,为金属陶瓷复合材料的制备提供理论支持。

    选择水雾化法制备的316L不锈钢粉(纯度为99.8%)作为基体材料,粉体形貌为球形,粒度主要集中在10~30 μm。ARZ陶瓷颗粒中Al2O3与ZrO2的质量比为3:7,ARZ粒度主要集中在1~2 μm,两种粉末微观形貌如图1所示。

    图  1  原料粉末微观形貌:(a)ARZ;(b)316L不锈钢
    Figure  1.  Morphology of the raw material powders: (a) ARZ; (b) 316L stainless steels

    采用粉末压制方法制备316L不锈钢/ARZ复合材料。选取ARZ陶瓷粉末体积分数为0、20%、40%和60%,加入硬脂酸锌作为粘结剂(质量分数为3%),充分研磨使得三种粉末混合均匀。将混合均匀的复合粉末置于不锈钢模具中压制成形,压制力为1000 MPa,压制速度为1 mm∙min−1,保压时间为3 min。将316L不锈钢/ARZ压制坯体在真空烧结炉中进行脱脂和烧结。烧结是坯体致密化的过程,直接决定了样品的组织与性能,因此选择合理的烧结工艺至关重要。潘超梅[14]通过比较不同烧结温度下的孔隙率研究316L不锈钢的最佳烧结温度,最终得出其合适的烧结温度为1340~1380 ℃。向不锈钢中添加陶瓷颗粒后,不锈钢做为基体起到包裹陶瓷颗粒的作用,复合材料的烧结温度由低熔点的基体决定,因此本文选择烧结温度为1370 ℃。316L不锈钢/ARZ坯料脱脂、烧结升温曲线如图2所示,650 ℃之前为脱脂阶段,升温速率为2 ℃∙min−1,并在200 ℃保温30 min,在650 ℃保温60 min,这是因为脱脂阶段需要缓慢进行,升温速度过快会导致粘结剂快速排出,造成样品开裂;随后以4 ℃∙min−1升温到1270 ℃,保温60 min,再以2 ℃∙min−1速度升到1370 ℃并保温120 min。

    图  2  316L不锈钢/ARZ坯料脱脂烧结升温曲线
    Figure  2.  Debinding and sintering temperature curve of the 316L stainless steel/ARZ billets

    利用光学显微镜和扫描电镜(scanning electron microscope,SEM)观察316L不锈钢/ARZ复合材料组织形貌;通过阿基米德排水法计算复合材料实际密度,称重(精度0.1 mg)后得出复合材料相对密度;采用洛式硬度计测量复合材料硬度;使用销盘磨损表征复合材料摩擦磨损性能,选择Al2O3陶瓷球作为对磨件,施加载荷10 N,旋转速度为250 r∙min−1,环境温度为20~25 ℃,设定摩擦时间30 min。摩擦磨损实验前后,在无水乙醇中超声清洗摩擦块试样表面,烘干后计算磨损前后样品质量,最后利用公式K=V/(S∙F)计算体积磨损率,其中K表示体积磨损率,V表示体积损失,可通过损失的质量和密度得出,S表示总位移路程,F表示加载载荷。

    图3为添加不同体积分数ARZ的复合材料扫描电子显微形貌。从图3可以看出,ARZ陶瓷颗粒均匀的分布于不锈钢基体中,成为增强相。随着ARZ陶瓷颗粒体积分数的增加,陶瓷颗粒存在一定程度的团聚现象,如图3(d)放大图所示。ARZ体积分数越高,团聚现象越明显,这是由于在粉末压制过程中,316L不锈钢粉末与陶瓷粉末塑性差别较大,在相同载荷与压下量情况下,二者变形程度不一致,因此造成了陶瓷颗粒的团聚现象。

    图  3  含不同体积分数ARZ复合材料扫描电子显微形貌:(a)0;(b)20%;(c)40%;(d)60%
    Figure  3.  SEM images of the composites with the different volume fraction of ARZ: (a) 0; (b) 20%; (c) 40%; (d) 60%

    为了更好的研究复合材料界面结合情况,选择含有ARZ体积分数为40%的复合材料,使用扫描电镜放大界面结合处,图4为复合材料界面放大图以及能谱(energy disperse spectroscope,EDS)表征。由图4可知,在高倍数放大情况下仍然观察不到界面结合处存在裂纹等缺陷,另外由能谱分析得知,基体与增强相之间存在元素扩散,这说明复合材料界面结合良好。

    图  4  含有体积分数40%ARZ的复合材料界面放大图及能谱面扫图
    Figure  4.  Magnified view and the EDS mapping images of the composites interface with the ARZ volume fraction of 40%

    图5为含不同体积分数ARZ复合材料的相对密度。从结果可以看出,未添加ARZ的316L不锈钢样品的相对密度为97.24%,添加体积分数20%的ARZ后,316L不锈钢/ARZ复合材料相对密度与基体几乎一样,为97.53%。但是,继续增加ARZ添加量,复合材料的相对密度快速下降。这是因为在316L不锈钢粉末压制过程中坯体会留下大量闭孔,这些闭孔在烧结过程中无法与外界联通,残留至烧结结束,当加入ARZ陶瓷颗粒后,由于充分的研磨,粒度较小的陶瓷颗粒会填充到原来不锈钢的闭孔位置,在一定程度上提高了复合材料的相对密度,因此添加20%体积分数的ARZ后复合材料相对密度并无下降,反而略有升高。在含体积分数40%和60%ARZ的复合材料中,由于陶瓷颗粒团聚现象加剧,在1370 ℃烧结温度下无法将ARZ陶瓷烧结致密化,在团聚的陶瓷颗粒中明显可见孔洞的存在,如图3(d)中放大图所示,这在一定程度上导致复合材料相对密度下降。

    图  5  含不同ARZ体积分数的复合材料相对密度
    Figure  5.  Relative density of the composites with the different volume fraction of ARZ

    图6为含不同体积分数ARZ的复合材料洛式硬度。从图6可知,复合材料的硬度随ARZ陶瓷含量的增加而增加,当ARZ体积分数达到60%时,复合材料硬度达到最大值HRB 96.8。这是因为ARZ陶瓷颗粒的硬度远远大于不锈钢基体,ARZ陶瓷作为复合材料中的增强相,会提高复合材料的硬度。除此之外,洛氏硬度是一种宏观硬度表征方法,除了与构成复合材料各组元硬度有关之外,还与复合材料相对密度密切相关。当陶瓷颗粒的含量到达一定值,陶瓷颗粒有不同程度的团聚,在1370 ℃烧结无法使ARZ陶瓷颗粒烧结致密,导致材料的相对密度下降,理论上硬度会有一定程度的减小,但此时颗粒增强带来的硬度增加大于相对密度下降带来的硬度减小,因此复合材料的整体硬度仍然呈现上升趋势。

    图  6  含不同体积分数ARZ复合材料的硬度
    Figure  6.  Hardness of the composites with the different volume fraction of ARZ

    图7为在相同的磨程和环境温度下,含有不同体积分数ARZ的复合材料在10 N载荷下的体积磨损率。由图7可知,在相同的载荷下,复合材料的体积磨损率随着ARZ陶瓷含量的增加而减小。ARZ体积分数为20%时磨损率较基体减小了约35%,而当ARZ体积分数继续增加到40%时,磨损率下降更加明显,为20%ARZ体积分数的47%,当ARZ的体积分数达到60%时,复合材料的磨损率较ARZ体积分数为40%的复合材料下降33%,这说明随着ARZ体积分数的增加,复合材料磨损率的下降趋势渐渐平缓。

    图  7  含有不同体积分数ARZ的复合材料的体积磨损率
    Figure  7.  Volume wear rate of composites with different volume fraction of ARZ

    图8为10 N载荷下含不同体积分数ARZ复合材料的摩擦系数。在摩擦过程开始阶段,当对磨件Al2O3陶瓷球与样品表面接触时,由于材料表面不平,接触仅发生在微凸体之间,在相对滑动与施加载荷作用下,接触点处的复合材料发生塑性变形和剪切变形。Al2O3球硬度大于复合材料,复合材料表面的微凸体容易在剪切力下发生断裂,此过程中摩擦系数主要受原始面粗糙度影响,波动较大。随着摩擦过程的进行,复合材料表面趋于光滑,这时样品与对磨件从点接触变为点面接触,接触面积的增大使得黏着增大。摩擦系数的提高可归因于磨损过程中表面黏附断裂的减少,造成表面材料去除率的减少。当较硬的Al2O3球表面微凸体在较软的复合材料上摩擦时,复合材料接触面上每一点均承受剪切力的作用,发生一定程度的犁削作用,在磨损表面形成沟槽、碎片和分层,这些特征是由塑性变形和疲劳断裂的综合作用形成的。然而如图9所示,ARZ颗粒的引入使得复合材料在磨损过程中并没有造成严重的损伤。

    图  8  含不同体积分数ARZ复合材料的摩擦系数
    Figure  8.  Friction coefficient of the composites with the different volume fraction of ARZ
    图  9  含不同体积分数ARZ复合材料的磨损形貌:(a)0;(b)20%;(c)40%;(d)60%
    Figure  9.  Wear morphology of the composites with the different volume fraction of ARZ: (a) 0; (b) 20%; (c) 40%; (d) 60%

    图9为含不同体积分数ARZ复合材料磨损形貌。从图中可以看出,摩擦接触面积随着ARZ体积分数的增加而增大,这是因为更多的硬质ARZ颗粒与Al2O3对磨件接触,导致其磨损量增加,由点面接触渐渐变为面面接触。随着ARZ含量的增加,犁沟越来越浅,这与体积磨损率随着ARZ含量的增加而减小的结果一致。加入的ARZ颗粒起到增强相的作用,直接承受摩擦过程中的压应力与剪切力,一定程度上保护了316L不锈钢基体不再被摩擦剥落。在预摩擦过程结束后,与Al2O3对磨件接触的既有316L不锈钢基体又有ARZ颗粒,当316L不锈钢承受载荷发生塑性变形时,由于与之相连的是ARZ陶瓷颗粒硬质相,无法缓解载荷,因此316L不锈钢颗粒先被磨损剥落,使得ARZ颗粒突出表面,留下大量的剥落坑。此时,在正常的载荷作用下,突出表面的ARZ陶瓷颗粒主要承受载荷,这也说明了ARZ颗粒与基体结合良好可有效地承受外界载荷[15]。将含体积分数40%ARZ的复合材料磨损面放大,观察到露出表面的ARZ颗粒,如图9(c)所示。表1图9(c)放大图对应的能谱分析,由表1可知,该区域中主要成分为ARZ陶瓷,316L不锈钢的含量大大减小,这表明磨损机理主要为316L不锈钢的剥落。另外在该区域中Al元素含量较高,这是因为当提高复合材料中ARZ体积分数时,作为对磨件的Al2O3陶瓷球磨损量增大,磨屑掉落所致。

    表  1  图9(c)放大图中能谱分析(质量分数)
    Table  1.  EDS analysis of the enlarged view in Fig.9(c) %
    AlZrFeCrO
    16.0331.901.753.7546.57
    下载: 导出CSV 
    | 显示表格

    316L不锈钢起着支持ARZ颗粒的作用。由于是ARZ颗粒与Al2O3陶瓷球接触并发生相对滑动,当316L不锈钢被摩擦剥落后,此时由突出表面的ARZ颗粒承受载荷,而ARZ颗粒被支持在316L不锈钢基体上,由于基体的高韧性,易于发生法向与切向变形,所以此时因磨损发生的剥落断裂现象减少,磨损量有所减小。当ARZ体积分数增大时,剥落的316L不锈钢减少,随着摩擦过程的进行,将会有更多的ARZ颗粒与Al2O3陶瓷球接触,因此ARZ体积分数越高,复合材料对载荷的增大越不敏感。

    (1)ARZ陶瓷颗粒与316L不锈钢界面结合良好,复合材料无开裂缺陷。

    (2)当ARZ体积分数为20%时,复合材料相对密度达到97.53%,与基体相当;当ARZ体积分数为40%和60%时,复合材料的相对密度明显低于基体。复合材料的硬度随着ARZ陶瓷含量的增加而增加,当ARZ体积分数为60%时,硬度达到最大值HRB 96.8。

    (3)加入ARZ陶瓷颗粒会显著提高复合材料的耐磨性,磨损机理主要为316L不锈钢颗粒的剥落。

    (4)随着ARZ陶瓷的添加,复合材料硬度与耐磨性均得到提高,但当ARZ体积分数高于40%后,复合材料孔隙率增加明显,这也将影响材料实际服役效果。文中ARZ最佳添加量为体积分数20%。

  • 图  1   激光熔化沉积成形TiAl基合金中的裂纹[10]:(a)散焦+3.81 mm,功率200 W;(b)散焦‒3.81 mm,功率200 W;(c)散焦+3.81 mm,功率300 W;(d)散焦‒3.81 mm,功率300 W

    Figure  1.   Cracks in the TiAl-based alloys formed by LMD[10]: (a) defocused to +3.81 mm at 200 W; (b) defocused to ‒3.81 mm at 200 W; (c) defocused to +3.81 mm at 300 W; (d) defocused to ‒3.81 mm at 300 W

    图  2   高速摄像机拍摄的“吹粉”现象[24]

    Figure  2.   Phenomenon of “Powder blowing” recorded by the high-speed camera[24]

    图  3   电子束选区熔化成形TiAl基合金的工艺窗口[25]:(a)低扫描速度;(b)高扫描速度

    Figure  3.   Process window of the TiAl-based alloys prepared by SEBM[25]: (a) at low scanning speed; (b) at high scanning speed

    图  4   电弧增材制造成形TiAl合金的微观组织[36]:(a)横截面;(b)顶部区;(c)带状区;(d)近基板区

    Figure  4.   Microstructure of the TiAl alloy prepared by WAAM[36]: (a) the cross-section; (b) the top region; (c) the layer bands; (d) the near-substrate region

    表  1   电子束选区熔化与传统工艺制备TiAl合金拉伸性能的对比

    Table  1   Tensile properties comparison of the TiAl alloys prepared by SEBM and traditional process

    文献材料工艺过程屈服强度 / MPa抗拉强度 / MPa延伸率 / %
    [27]Ti‒48Al‒2Cr‒2Nb电子束选区熔化503
    [27]Ti‒48Al‒2Cr‒2Nb电子束选区熔化+热等静压+退火(1260 ℃/2 h)3824741.30
    [27]Ti‒48Al‒2Cr‒2Nb电子束选区熔化+热等静压+退火(1360 ℃/2 h)3734290.80
    [29]Ti‒47Al‒2Cr‒2Nb电子束选区熔化556~6840.31~0.70
    [30]Ti‒47Al‒2Cr‒2Nb电子束选区熔化462~523462~5680.27~0.98
    [31]Ti‒48Al‒2Cr‒2Nb电子束选区熔化+热等静压370~90430~4501.00~1.20
    [31]Ti‒48Al‒2Cr‒2Nb电子束选区熔化+退火(1320 ℃/2 h)350~370460~4801.00~1.20
    [32]Ti‒48Al‒2Cr‒2Nb铸造 312±10570±200.48±0.05
    [33]Ti‒48Al‒2Cr‒2Nb铸造5100.4
    [34]Ti‒48Al‒2Cr‒2Nb‒1B锻造(1380 ℃/1 h)+空冷440±15557±151.30±0.10
    下载: 导出CSV
  • [1]

    Kesler M S, Goyel S, Ebrahimi F, et al. Effect of microstructural parameters on the mechanical behavior of TiAlNb(Cr, Mo) alloys with γ+σ microstructure at ambient temperature. J Alloys Compd, 2017, 695: 2672 DOI: 10.1016/j.jallcom.2016.11.181

    [2]

    Zhou H T, Kong F T, Wang X P, et al. High strength in high Nb containing TiAl alloy sheet with fine duplex microstructure produced by hot pack rolling. J Alloys Compd, 2017, 695: 3495 DOI: 10.1016/j.jallcom.2016.12.005

    [3]

    Palomares-García A J, Pérez-Prado M T, Molina-Aldareguia J M. Effect of lamellar orientation on the strength and operating deformation mechanisms of fully lamellar TiAl alloys determined by micropillar compression. Acta Mater, 2017, 123: 102 DOI: 10.1016/j.actamat.2016.10.034

    [4]

    Xu W C, Jin X Z, Huang K, et al. Improvement of microstructure, mechanical properties and hot workability of a TiAl‒Nb‒Mo alloy through hot extrusion. Mater Sci Eng A, 2017, 705: 200 DOI: 10.1016/j.msea.2017.08.082

    [5]

    Ding J, Lin J P, Zhang M H, et al. High-temperature torsion induced gradient microstructures in high Nb‒TiAl alloy. Mater Lett, 2017, 209: 193 DOI: 10.1016/j.matlet.2017.07.124

    [6] 石文天, 王朋, 刘玉德, 等. 选区激光熔化TiAl合金裂纹产生机制及工艺优化试验研究. 稀有金属, 2019, 43(4): 349

    Shi W T, Wang P, Liu Y D, et al. Crack initiation mechanism and experiment study of process optimization of TiAl alloy formed by selective laser melting. Chin J Rare Met, 2019, 43(4): 349

    [7] 孙信, 杨怀超, 邵文生, 等. 3D打印一体化制备阴极热子组件研究. 粉末冶金技术, 2020, 38(4): 300

    Sun X, Yang H C, Shao W S, et al. Study on integrated fabrication of cathode-heater assembly by 3D printing. Powder Metall Technol, 2020, 38(4): 300

    [8] 张光曦, 刘世锋, 杨鑫, 等. 增材制造技术制备生物植入材料的研究进展. 粉末冶金技术, 2019, 37(4): 312

    Zhang G X, Liu S F Yang X, et al. Research progress on preparation of biological implant materials by additive manufacturing. Powder Metall Technol, 2019, 37(4): 312

    [9]

    Debroy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components — process, structure and properties. Prog Mater Sci, 2018, 92: 112 DOI: 10.1016/j.pmatsci.2017.10.001

    [10]

    Sharman A R C, Hughes J I, Ridgway K. Characterisation of titanium aluminide components manufactured by laser metal deposition. Intermetallics, 2018, 93: 89 DOI: 10.1016/j.intermet.2017.11.013

    [11]

    Shi X Z, Ma S Y, Liu C M, et al. Parameter optimization for Ti‒47Al‒2Cr‒2Nb in selective laser melting based on geometric characteristics of single scan tracks. Opt Laser Technol, 2017, 90: 71 DOI: 10.1016/j.optlastec.2016.11.002

    [12]

    Weisheit A, Mordike B L, Smarsly W, et al. Laser surface remelting and laser surface gas alloying of an intermetallic TiAl alloy. Laser Eng, 2000, 10(1): 63

    [13] 杨益, 党明珠, 李伟, 等. 激光选区熔化钛铝合金裂纹形成机理及抑制研究. 机械工程学报, 2020, 56(3): 181 DOI: 10.3901/JME.2020.03.181

    Yang Y, Dang M Z, Li W, et al. Study on cracking mechanism and inhibiting process of TiAl alloys fabricated by selective laser melting. J Mech Eng, 2020, 56(3): 181 DOI: 10.3901/JME.2020.03.181

    [14]

    Gussone J, Hagedorn Y C, Gherekhloo H, et al. Microstructure of γ-titanium aluminide processes by selective laser melting at elevated temperatures. Intermetallics, 2015, 66: 133 DOI: 10.1016/j.intermet.2015.07.005

    [15] 刘占起, 徐国建, 马瑞鑫, 等. 激光同轴送粉增材制造TiAl合金的性能. 中国激光, 2019, 46(3): 146

    Liu Z Q, Xu G J, Ma R X, et al. Properties of TiAl alloy prepared by additive manufacturing with laser coaxial powder feeding. Chin J Lasers, 2019, 46(3): 146

    [16] 刘占起, 王文博, 马瑞鑫, 等. 激光熔化沉积制造γ-TiAl合金的组织与性能. 稀有金属材料与工程, 2020, 49(6): 1925

    Liu Z Q, Wang W B, Ma R X, et al. Microstructure and properties of γ-TiAl alloy fabricated by laser melting deposition. Rare Met Mater Eng, 2020, 49(6): 1925

    [17] 刘占起, 马瑞鑫, 王文博, 等. 基板材料对激光熔化沉积制造Ti‒48Al‒2Cr‒2Nb合金组织、织构、相和显微硬度的影响. 稀有金属材料与工程, 2020, 49(7): 2262

    Liu Z Q, Ma R X, Wang W B, et al. Effect of substrate material on the microstructure, texture, phase and microhardness of a Ti‒48Al‒2Cr‒2Nb alloy processed by laser melting deposition. Rare Met Mater Eng, 2020, 49(7): 2262

    [18]

    Liu Z Q, Ma R X, Xu G J, et al. Effects of annealing on microstructure and mechanical properties of γ-TiAl alloy fabricated via laser melting deposition. Trans Nonferrous Met Soc China, 2020, 30(4): 917 DOI: 10.1016/S1003-6326(20)65265-7

    [19] 张俊生, 程序, 张述泉, 等. 激光增材制造Ti‒48Al‒2Nb‒2Cr金属间化合物氧化性能. 中国激光, 2018, 45(4): 146

    Zhang J S, Cheng X, Zhang S Q, et al. Oxidation performance of Ti‒48Al‒2Nb‒2Cr intermetallic compounds prepared by laser additive manufacturing. Chin J Lasers, 2018, 45(4): 146

    [20]

    Li W, Liu J, Wen S F, et al. Crystal orientation, crystallographic texture and phase evolution in the Ti‒45Al‒2Cr‒5Nb alloy processed by selective laser melting. Mater Charact, 2016, 113: 125 DOI: 10.1016/j.matchar.2016.01.012

    [21]

    Li W, Liu J, Zhou Y, et al. Effect of laser scanning speed on a Ti‒45Al‒2Cr‒5Nb alloy processed by selective laser melting: microstructure, phase and mechanical properties. J Alloys Compd, 2016, 688: 626 DOI: 10.1016/j.jallcom.2016.07.206

    [22]

    Li W, Liu J, Zhou Y, et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti‒45Al‒2Cr‒5Nb alloy processed by selective laser melting. Scr Mater, 2016, 118: 13 DOI: 10.1016/j.scriptamat.2016.02.022

    [23]

    Franzén S F. Titanium Aluminide Manufactured by Electron Beam Melting [Dissertation]. Gothenburg: Chalmers University of Technology, 2010

    [24]

    Milberg J, Sigl M. Electron beam sintering of metal powder. Prod Eng, 2008, 2(2): 117 DOI: 10.1007/s11740-008-0088-2

    [25]

    Schwerdtfeger J, Körner C. Selective electron beam melting of Ti‒48Al‒2Cr‒2Nb: Microstructure and aluminium loss. Intermetallics, 2014, 49: 29 DOI: 10.1016/j.intermet.2014.01.004

    [26]

    Murr L E, Gaytan S M, Ceylan A, et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater, 2010, 58(5): 1887 DOI: 10.1016/j.actamat.2009.11.032

    [27] 陈玮, 杨洋, 刘亮亮, 等. 电子束增材制造γ-TiAl显微组织调控与拉仲性能研究. 航空制造技术, 2017(增刊1): 37

    Chen W, Yang Y, Liu L L, et al. Microstructure control and tensile properties of EBM γ-TiAl. Aeronaut Manuf Technol, 2017(Suppl 1): 37

    [28]

    Yue H Y, Chen Y Y, Wang X P, et al. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti‒47Al‒2Cr‒2Nb alloy fabricated by selective electron beam melting. J Alloys Compd, 2018, 750: 617 DOI: 10.1016/j.jallcom.2018.03.343

    [29]

    Chen Y Y, Yue H Y, Wang X P. Microstructure, texture and tensile property as a function of scanning speed of Ti‒47Al‒2Cr‒2Nb alloy fabricated by selective electron beam melting. Mater Sci Eng A, 2018, 713: 195 DOI: 10.1016/j.msea.2017.12.020

    [30]

    Yue H Y, Chen Y Y, Wang X P, et al. Microstructure, texture and tensile properties of Ti‒47Al‒2Cr‒2Nb alloy produced by selective electron beam melting. J Alloys Compd, 2018, 766: 450 DOI: 10.1016/j.jallcom.2018.07.025

    [31]

    Biamino S, Penna A, Ackelid U, et al. Electron beam melting of Ti‒48Al‒2Cr‒2Nb alloy: Microstructure and mechanical properties investigation. Intermetallics, 2011, 19(6): 776 DOI: 10.1016/j.intermet.2010.11.017

    [32]

    Han J C, Xiao S L, Tian J, et al. Microstructure characterization and tensile properties of a Ni-containing TiAl-based alloy with heat treatment. Rare Met, 2016, 35(1): 26 DOI: 10.1007/s12598-015-0626-y

    [33] 包春玲, 谢华生, 赵军, 等. 热等静压处理对铸造Ti‒48Al‒2Cr‒2Nb合金组织和力学性能的影响. 铸造, 2017, 66(1): 64 DOI: 10.3969/j.issn.1001-4977.2017.01.014

    Bao C L, Xie H S, Zhao J, et al. Effects of HIP on microstructure and mechanical properties of cast Ti‒48Al‒2Cr‒2Nb alloy. Foundry, 2017, 66(1): 64 DOI: 10.3969/j.issn.1001-4977.2017.01.014

    [34]

    Hu D, Godfrey A, Blenkinsop P A, et al. Processing-property-microstructure relationships in TiAl-based alloys. Metall Mater Trans A, 1998, 29(13): 919 DOI: 10.1007/s11661-998-1000-6

    [35] 孙世杰. 增材制造方法生产的TiAl合金零件将被应用于飞机发动机涡轮叶片. 粉末冶金工业, 2015, 25(1): 65

    Sun S J. TiAl alloy turbine blade produced by additive manufacturing method applied to aircraft engine. Powder Metall Ind, 2015, 25(1): 65

    [36]

    Ma Y, Cuiuri D, Hoye N, et al. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding. Mater Sci Eng A, 2015, 631: 230 DOI: 10.1016/j.msea.2015.02.051

    [37]

    Ma Y, Cuiuri D, Li H J, et al. The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process. Mater Sci Eng A, 2016, 657: 86 DOI: 10.1016/j.msea.2016.01.060

    [38]

    Ma Y, Cuiuri D, Hoye N, et al. Effects of wire feed conditions on in situ alloying and additive layer manufacturing of titanium aluminides using gas tungsten arc welding. J Mater Res, 2014, 29(17): 2066 DOI: 10.1557/jmr.2014.203

    [39]

    Wang J, Pan Z X, Wei L L, et al. Introduction of ternary alloying element in wire arc additive manufacturing of titanium aluminide intermetallic. Addit Manuf, 2019, 27: 236

  • 期刊类型引用(1)

    1. 郭宝群,付铁,李阳,孙刚,张政. 基于陶瓷颗粒-高锰钢基复合材料风扇磨煤机打击板的制备与性能测试. 精细化工中间体. 2025(01): 42-47 . 百度学术

    其他类型引用(0)

图(4)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-10-12
  • 录用日期:  2020-11-25
  • 网络出版日期:  2022-04-07
  • 刊出日期:  2022-04-25

目录

/

返回文章
返回