高级检索

固体氧化物燃料电池用SUS430-Sr2Fe1.5Mo0.5O6‒δ不锈钢-陶瓷复合连接体材料的制备及性能研究

王飘飘, 陈鹏起, 方青青, 张美, 洪涛, 程继贵

王飘飘, 陈鹏起, 方青青, 张美, 洪涛, 程继贵. 固体氧化物燃料电池用SUS430-Sr2Fe1.5Mo0.5O6‒δ不锈钢-陶瓷复合连接体材料的制备及性能研究[J]. 粉末冶金技术, 2021, 39(2): 99-106. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120011
引用本文: 王飘飘, 陈鹏起, 方青青, 张美, 洪涛, 程继贵. 固体氧化物燃料电池用SUS430-Sr2Fe1.5Mo0.5O6‒δ不锈钢-陶瓷复合连接体材料的制备及性能研究[J]. 粉末冶金技术, 2021, 39(2): 99-106. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120011
WANG Piao-piao, CHEN Peng-qi, FANG Qing-qing, ZHANG Mei, HONG Tao, CHENG Ji-gui. Preparation and performance of SUS430-Sr2Fe1.5Mo0.5O6‒δ stainless steel-ceramic composite interconnect materials for solid oxide fuel cell[J]. Powder Metallurgy Technology, 2021, 39(2): 99-106. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120011
Citation: WANG Piao-piao, CHEN Peng-qi, FANG Qing-qing, ZHANG Mei, HONG Tao, CHENG Ji-gui. Preparation and performance of SUS430-Sr2Fe1.5Mo0.5O6‒δ stainless steel-ceramic composite interconnect materials for solid oxide fuel cell[J]. Powder Metallurgy Technology, 2021, 39(2): 99-106. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120011

固体氧化物燃料电池用SUS430-Sr2Fe1.5Mo0.5O6‒δ不锈钢-陶瓷复合连接体材料的制备及性能研究

基金项目: 国家自然科学基金资助项目(51802065);中国博士后科学基金资助项目(2018M630702);中央高校基本科研基金资助项目(PA2019GDPK0083)
详细信息
    通讯作者:

    程继贵: E-mail:jgcheng@hfut.edu.cn

  • 中图分类号: TF125.1

Preparation and performance of SUS430-Sr2Fe1.5Mo0.5O6‒δ stainless steel-ceramic composite interconnect materials for solid oxide fuel cell

More Information
  • 摘要: 以SUS430不锈钢粉末和Sr2Fe1.5Mo0.5O6−δ(SFM)陶瓷粉末为原料,通过成形烧结结合涂覆的方法制备了应用于固体氧化物燃料电池(solid oxide fuel cell,SOFC)的SUS430-SFM不锈钢-陶瓷复合连接体材料,并对SUS430和SUS430-SFM两种烧结体试样的显微组织、抗氧化性能和导电性能进行了分析。结果表明,SFM涂层与SUS430基体具有相匹配的热膨胀系数(thermal expansion coefficient,TEC),两者界面结合良好;在空气气氛中经800 ℃氧化140 h后,SUS430-SFM试样的氧化速率常数(K)约为3.66×10−14 g2∙cm−4∙s−1,比SUS430试样(2.42×10−14 g2∙cm−4∙s−1)降低了约50%,其面比电阻(area specific resistance,ASR)则由SUS430试样的81 mΩ∙cm2降至SUS430-SFM的2.6 mΩ∙cm2,说明SFM涂层能够有效改善SUS430不锈钢基体的抗氧化及导电性能。
    Abstract: The SUS430-Sr2Fe1.5Mo0.5O6−δ (SUS430-SFM) stainless steel-ceramic composite connector materials for solid oxide fuel cell (SOFC) were prepared by a compaction-sintering-coating method, using SUS430 stainless powders and Sr2Fe1.5Mo0.5O6−δ (SFM) ceramic powders as the raw materials. Microstructure, oxidation resistance, and electrical conductivity of the sintered SUS430 and SUS430-SFM samples were characterized. The results show that the SFM coating and the SUS430 substrate show a matching thermal expansion coefficient (TEC), and there is a good combination between the coating and the substrate. The oxidation rate constant of the SUS430-SFM sample is about 3.66×10−14 g2∙cm−4∙s−1 after oxidation at 800 ℃ for 140 h in air, which is about 50% lower than that of the SUS430 sample (2.42×10−14 g2∙cm−4∙s−1). The area specific resistance (ASR) of the SUS430-SFM sample also reduces from 81 mΩ∙cm2 (SUS430 sample) to 2.6 mΩ∙cm2. The present work indicates that the SFM coating can effectively improve the oxidation resistance and the electrical conductivity of the SUS430 stainless substrate.
  • 3D打印技术,又称增材制造(additive manufacturing,AM),是相对于传统机加工等“减材制造”技术而言的,是基于离散/堆积原理,通过材料的逐渐累积来实现制造的技术。3D打印技术利用计算机将成形零件的3D模型切成一系列一定厚度的“薄片”,通过3D打印设备自下而上地制造出每一层“薄片”,最后叠加成形出三维实体零件。这种制造技术无需传统的刀具或模具,可以实现传统工艺难以或无法加工的复杂结构的制造,并且可以有效简化生产工序,缩短制造周期[1]

    1986年,美国3D Systems创始人Charles Hull开发了第一台商业3D印刷机,由此3D打印技术进入了一个快速发展的时期。目前,该技术在建筑、汽车工业、航空航天、船舶工业、能源、医疗、教育、土木工程以及其他领域都有广泛的应用[23]。2014年8月31日,美国宇航局进行了3D打印火箭喷射器的测试,验证了3D打印技术在火箭发动机制造上的可行性,也正面验证了3D打印可应用于燃气轮机行业的可能性[46]。2017年,美国通用电气公司宣布由3D打印技术制备的最大燃气轮机9HA.02可以以64%的效能运行,打破了能源行业的记录,并利用3D打印技术为涡轮机制造了多个部件。2018年,德国西门子股份公司成功为其航空改型燃气轮机SGT-A05进行了3D打印和发动机测试。

    金属3D打印技术在高温合金燃气轮机方面的应用愈显重要。GTD222作为一种新型的镍基沉淀硬化型等轴晶铸造高温合金,具有1000 ℃以上的使用温度、中等高温强度、良好的抗蠕变和抗疲劳性能、优异的高温抗氧化和耐腐蚀性能、良好的铸造和焊接工艺性能以及优秀的长期时效组织稳定性,被应用于航空航天、能源等重大领域。

    气雾化法作为国内常用的制粉技术之一,具有生产效率高、成本低等优点,能够制备粒度小、球形度好、纯净度高的金属与合金粉末[79]。上世纪80年代中期,瑞典的研究者通过对限制型喷嘴的研究发现,增加气压可以减小粉末的平均粒径,但由于气体速度和压力接近线型关系,当气压超过5 MPa后,其速度增加很少,而且增加气压还明显增加气体消耗量。因此,在限制型喷嘴中雾化气体压力一般不超过5.5 MPa,限制了雾化效率的进一步提高[10]。提高雾化效率的另一个可行方法是增加气体动能的传输效率。根据这一思想,研究者对限制型喷嘴结构进行了改进,提出了紧耦合气雾化的概念。本文选用紧耦合式环缝雾化喷嘴作为核心部件,在保证雾化压力等参数一定的情况下,研究不同进气方式对GTD222高温合金粉末性能的影响。

    实验用GTD222高温合金熔炼用原料采用同一批原料,其化学成分如表1所示。GTD222高温合金粉末制备的工艺路线是:GTD222高温合金原料→真空感应熔炼→惰性气体雾化→粉末收集→粉末筛分分级→粒度配比。

    表  1  GTD222高温合金原料的化学成分(质量分数)
    Table  1.  Chemical composition of the GTD222 superalloys %
    NiCCrCoWAlTiNbBTaZrO
    余量0.122.7318.951.91.192.350.860.00531.060.0120.0013
    下载: 导出CSV 
    | 显示表格

    实验采用的是真空感应熔炼紧耦合气雾化技术,具有定量的金属液流直径,金属液流有过热度,因而漏嘴直径、进气方式、喷嘴结构、钢液温度和雾化压力等参数对粉末的形貌及粒度都具有直接的影响。本文主要研究进气方式对粉末形貌、粉末粒度及其分布的影响。

    在气雾化技术中,喷嘴外套的进气口一般分为单向进气和双向进气,双向进气结构相对于单向而言,更有利于气室内压力的对称性分布,因此本文选择双向进气结构的喷嘴外套来进行此次对比实验。喷嘴内外套的进气方向主要分为垂直进气和切向进气,本文采用外直内直、外直内切、外切内直及外直内切四种进气组合来研究不同进行方式对粉末性能的影响规律,如图1所示。

    图  1  不同雾化喷嘴内外套的进气方向(单位:mm):(a)外套垂直进气;(b)外套切向进气;(c)内套垂直进气;(d)内套切向进气
    Figure  1.  Gas inlets of the inner and outer casings for the atomizing nozzle (unit: mm): (a) outer straight; (b) outer tangent; (c) inner straight; (d) inner tangent

    在雾化设备安全运行参数范围内,选定如下固定参数:钢液保温温度(1620±20) ℃,保温时间20 min,漏包温度(1060±30) ℃,雾化介质为氮气或氩气,雾化压力3.0 MPa,选定的进气方式如表2所示。

    表  2  不同进气方式组合
    Table  2.  Combination of the gas inlets
    编号进气方式
    A外直内直
    B外切内直
    C外直内切
    D外切内切
    下载: 导出CSV 
    | 显示表格

    根据国家标准GB/T 5314[11]《粉末冶金用粉末 取样方法》进行取样,对粉末样品进行化学元素分析。根据国家标准GB/T 19077.1[12]《粒度分析 激光衍射法 第1部分:通则》,采用Mastersizer2000激光粒度分析仪对3D用金属粉体材料的粒径及粒度分布进行测试,测定粉末颗粒的表面积等效直径(dS,D[3,2])和颗粒的体积等效直径(dV,D[4,3]),进而得到粉末的平均球形度Q=dS/dV。利用场发射扫描电子显微镜QUANTA400FEG观察粉末的表面形貌。按照GB/T1482[13]《金属粉末 流动性的测定 标准漏斗法(霍尔流速计)》标准,采用霍尔流速计对3D打印用金属粉末进行流动性测定。根据GB/T1479.1[14]《金属粉末 松装密度的测定 第1部分:漏斗法》,采用霍尔流速计对3D打印用金属粉末的松装密度进行测试。

    对四种进气方式下得到的GTD222高温合金粉末进行筛分,选取其中53 μm以下的粉末进行化学成分测定,检测结果如表3所示。对比四种不同进气方式制备的GTD222高温合金粉末的化学成分可以看出,主要元素的成分差别很小,C、Al、Ti元素的烧损程度较低,说明在真空环境和氩气的保护下,未有较多空气进入炉内与合金发生反应,保证了粉末的低氧与低氮。随着进气方式的改变,粉末中氧含量出现了相应的变化,其中A最低,D最高。在确定没有较多外界氧气与合金反应的情况下,雾化得到的粉末越细,比表面积越大,吸附游离氧更多,导致氧元素含量增大。由此反推,A得到的粉末最粗,D得到的粉末最细。

    表  3  不同进气方式GTD222高温合金粉末的化学成分(质量分数)
    Table  3.  Chemical composition of the GTD222 superalloy powders prepared by the different gas inlets %
    进气方式CCrCoWAlTiNbBTaZrO
    A0.0722.5618.851.81.122.340.880.00521.030.0120.0132
    B0.0922.3718.901.91.142.290.850.00551.020.0130.0175
    C0.0822.4518.881.71.112.310.860.00541.050.0120.0195
    D0.0822.1818.931.91.132.330.870.00531.020.0110.0283
    下载: 导出CSV 
    | 显示表格

    根据对3D打印用GTD222高温合金粉末化学成分的分析研究,适用于3D打印的高温合金粉末的氧含量(质量分数)都低于0.05%,本文采用雾化制粉设备适合于制备低氧含量的金属粉末,在四种制粉进气方式下制备的GTD222高温合金粉末氧含量都小于0.05%,能够满足3D打印技术对于低含氧量的要求。

    对四种进气方式下制备的GTD222高温合金粉末进行粒度分析测定,结果如表4所示。由表可知,四种进气方式得到的粉末粒度按A、B、C、D顺序依次减小,其中A、B小于53 μm的粉末收得率都低于40%,这进一步验证了上述氧含量与粒径的相关规律。对四种进气方式进行冷态测试,结果如表5所示,发现在相同雾化压力下,A、B、C、D进气方式在喷嘴处的抽吸力逐渐增强,说明相对垂直进气结构而言,切向进气结构喷嘴抽吸力得到了较大提升,且雾化气流具有较强的剪切力,更有利于粉末的细化。从图2粒径累积分布曲线可以看出,粒径累积分布曲线随着进气方式的变化而向左发生偏移,粉末的粒径变小。

    表  4  不同进气方式GTD222高温合金粉末的粒度累积分布
    Table  4.  Size distribution of the GTD222 superalloy powders prepared by the different gas inlets
    进气方式粒度累积分布 / %D50 / μm
    3 μm15 μm30 μm40 μm53 μm70 μm80 μm105 μm
    A0.131.2313.2324.2435.7253.8762.1578.3066.78
    B0.201.5814.3025.3638.0557.2365.8181.8263.65
    C0.111.7316.4928.4344.4760.9367.4784.1257.98
    D0.232.1422.5635.2547.5463.7271.2687.2255.35
    注:D50为粉末的平均粒径
    下载: 导出CSV 
    | 显示表格
    表  5  不同进气方式喷嘴口的抽吸力变化
    Table  5.  Suction change of the nozzle under the different gas inlets
    进气方式抽吸力 / kPa
    A−42.25
    B−48.36
    C−57.77
    D−63.58
    下载: 导出CSV 
    | 显示表格
    图  2  不同进气方式对GTD222高温合金粉末粒径的影响
    Figure  2.  Effect of the gas inlets on the size distribution of the GTD222 superalloy powders

    进气方式C和D制备的GTD222高温合金粉末在105 μm以下粉末收得率接近90%,小于53 μm的粉末收得率均高于40%,细粉收得率高。市场上几乎所有的3D打印成形设备都要求粉末粒径≤53 μm,有的甚至要求粒径≤45 μm,因此细粉收得率直接决定了粉末的利用率。A进气方式制备的粉末利用率最低,导致制备成本很高,无法实现大批量规模化生产,C和D进气方式制得粉末的利用率较高,并且这两种进气方式制备的粉末粒径较为接近。然而在实际3D打印过程中,耗材选择方面更偏向于氧含量较低的一方,C的氧含量明显低于D,因此C进气方式更适合制备3D打印用GTD222高温合金粉末。

    对不同进气方式制备的GTD222高温合金粉末的球形度、流动性以及松装密度进行测定,结果如表6所示,可以发现D进气方式制备的粉末球形度最高,A进气方式制备的粉末流动性最好,四种进气方式制备的粉末松装密度相差很小。

    表  6  不同进气方式下GTD222高温合金粉末的球形度、流动性和松装密度
    Table  6.  Sphericility, fluidity, and loose packed density of the GTD222 superalloy powders prepared by the different gas inlets
    进气方式球形度流动性 / [s∙(50 g)−1]松装密度 / (g∙cm−3)
    A0.7021.234.65
    B0.7323.514.68
    C0.7726.154.63
    D0.7928.234.66
    下载: 导出CSV 
    | 显示表格

    在电子扫描显微镜下对四种进气方式制备的GTD222高温合金粉末进行观察,结果如图3所示。A、B、C、D四种进气方式制备的合金粉末基本呈球形颗粒,并且一部分小颗粒粉末粘连、团聚形成“卫星球”粉末,大部分的细小颗粒粉末发生了团聚,随着粉末整体粒度的降低,细小颗粒粉末的比例增加,同样粘连团聚的粉末比例也增加,流动性随之降低。

    图  3  不同进气方式制备的GTD222高温合金粉末显微形貌:(a)A;(b)B;(c)C;(d)D
    Figure  3.  Microstructure of the GTD222 superalloy powders prepared by the different gas inlets: (a) A; (b) B; (c) C; (d) D

    颗粒表面凝固组织为树枝晶和胞状晶组织,其中大尺寸粉末表面为发达枝晶组织,晶粒较粗大,表面附着的“卫星球”粉末尺寸较大;中等尺寸粉末表面为树枝晶和胞状晶的混合组织,表面光滑平整,没有“卫星球”粉末,随着粉末尺寸的减小,粉末表面组织由树枝晶向胞状晶转变,粉末球形度高,组织趋于细化平整,减小粉末的使用尺寸,粉末中胞晶组织比例将增加,枝晶组织减少,枝晶偏析得到弱化,粉末的组织和成分分布更为均匀[15]

    (1)采用真空感应熔炼气雾化技术制备的GTD222高温合金粉末氧含量(质量分数)低、球形度高、流动性好,能满足3D打印对粉末的综合需求。

    (2)通过改变雾化喷嘴的进气方式可以获得不同粒径分布、颗粒形貌的GTD222高温合金粉末。切向进气方式能够有效提高细粉收得率。

    (3)最佳雾化工艺参数为进气方式外直内切,保温温度(1620±20) ℃,保温时间20 min,漏包温度(1060±30) ℃,高纯氩气雾化,雾化压力3.0 MPa。按此雾化工艺制备的GTD222高温合金粉末的氧含量(质量分数)低于0.02%,球形度较高,流动性和松装密度满足3D打印对金属粉末的要求。

  • 图  1   SUS430和SFM粉体X射线衍射谱图:(a)SUS430粉末;(b)SFM粉末

    Figure  1.   XRD patterns of the SUS430 and SFM powders: (a) SUS430 powders; (b) SFM powders

    图  2   SUS430和SFM粉体显微形貌及粒度分布曲线:(a)SUS430粉体;(b)SFM粉体

    Figure  2.   SEM images and the particle size distribution of the SUS430 and SFM powders: (a) SUS430 powders; (b) SFM powders

    图  3   SUS430和SUS430-SFM烧结体试样的表面微观形貌:(a)SUS430试样;(b)SUS430-SFM试样

    Figure  3.   Surface microtopography of the sintered SUS430 and SUS430-SFM samples: (a) SUS430 sample; (b) SUS430-SFM sample

    图  4   SUS430和SFM烧结体试样的ΔL/L随温度的变化

    Figure  4.   ΔL/L of the sintered SUS430 and SFM samples as a function of temperature

    图  5   SUS430-SFM试样界面显微形貌(a)和能谱分析面扫描图((b)~(f))

    Figure  5.   SEM images (a) and EDS mapping ((b)~(f)) of the interface of SUS430-SFM samples

    图  6   SUS430和SUS430-SFM试样氧化增重与氧化时间的关系

    Figure  6.   Relationship between the oxidation weight gain of the SUS430 and SUS430-SFM samples as a function of oxidation time

    图  7   SUS430试样在空气中于800 ℃氧化140 h后的显微形貌(a)、X射线衍射谱图(b)和能谱分析(c)

    Figure  7.   SEM images (a), XRD patterns (b), and EDS mapping (c) of the SUS430 sample after oxidation at 800 ℃ in air for 140 h

    图  8   SUS430-SFM试样在空气中于800 ℃氧化140 h后显微形貌(a)、X射线衍射谱图(b)和能谱分析(c)

    Figure  8.   SEM images (a), XRD patterns (b), and EDS mapping (c) of the SUS430-SFM sample after oxidation at 800 ℃ in air for 140 h

    图  9   SUS430和SUS430-SFM试样在空气中于800 ℃氧化140 h后的面比电阻(ASR)

    Figure  9.   Area specific resistance (ASR) of the SUS430 and SUS430-SFM samples after oxidation in air for 140 h at 800 ℃

    图  10   实验ASR值与其他文献的对比

    Figure  10.   Comparison of ASR obtained in this paper with other literatures

    表  1   实验用SUS430不锈钢粉末的化学成分(质量分数)

    Table  1   Chemical composition of the SUS430 stainless steel powders in experimental %

    CrMnSiCSNiFe
    16.00~18.00≤1.00≤0.75≤0.12≥0.03≤0.60余量
    下载: 导出CSV
  • [1]

    Yang Z G, Xia G G, Li X H, et al. (Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. Int J Hydrogen Energy, 2007, 32(16): 3648 DOI: 10.1016/j.ijhydene.2006.08.048

    [2] 高彬, 张勇, 李振奎, 等. 金属连接体表面Y改性NiFe2O4尖晶石涂层的制备与性能. 热加工工艺, 2019, 48(2): 143

    Gao B, Zhang Y, Li Z K, et al. Preparation and properties of Y modified NiFe2O4 spinel coating on surface of metal interconnects. Hot Working Technol, 2019, 48(2): 143

    [3]

    Wu J W, Liu X B. Recent development of SOFC metallic interconnect. J Mater Sci Technol, 2010, 26(4): 293 DOI: 10.1016/S1005-0302(10)60049-7

    [4]

    Shaigan N, Qu W, Ivey D G, et al. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J Power Sources, 2010, 195(6): 1529 DOI: 10.1016/j.jpowsour.2009.09.069

    [5]

    Mah J C W, Muchtar A, Somalu M R, et al. Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques. Int J Hydrogen Energy, 2017, 42(14): 9219 DOI: 10.1016/j.ijhydene.2016.03.195

    [6]

    Yang X L, Tu H Y, Yu Q C. Fabrication of Co3O4 and La0.6Sr0.4CoO3‒δCe0.8Gd0.2O2‒δ dual layer coatings on SUS430 steel by in-situ phase formation for solid oxide fuel cell interconnects. Int J Hydrogen Energy, 2015, 40(1): 607 DOI: 10.1016/j.ijhydene.2014.11.021

    [7]

    Fergus J W. Metallic interconnects for solid oxide fuel cells. Mater Sci Eng A, 2005, 397(1-2): 271 DOI: 10.1016/j.msea.2005.02.047

    [8] 张鹏, 王智勇, 尚峰, 等. 两相质量比对粉末冶金双相不锈钢显微组织与力学性能的影响. 粉末冶金技术, 2020, 38(4): 269

    Zhang P, Wang Z Y, Shang F, et al. Effect of two phase mass ratio on the microstructure and mechanical properties of duplex stainless steel fabricated by powder metallurgy. Powder Metall Technol, 2020, 38(4): 269

    [9]

    Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells. Mater Sci Eng A, 2003, 348(1-2): 227 DOI: 10.1016/S0921-5093(02)00736-0

    [10]

    Evans A, Bieberle-Hütter A, Galinski H, et al. Micro-solid oxide fuel cells: status, challenges, and chances. Monatsh Chem, 2009, 140(9): 975 DOI: 10.1007/s00706-009-0107-9

    [11] 赵刚, 周小军, 张静, 等. Nb‒Ti‒Al基合金防护涂层制备及其抗氧化机理研究. 粉末冶金技术, 2017, 35(5): 347

    Zhao G, Zhou X J, Zhang J, et al. Preparation and antioxidationm echanism of Nb‒Ti‒Al based alloy protective coatings. Powder Metall Technol, 2017, 35(5): 347

    [12] 周天池, 丁江涛, 赖永彪, 等. 金属连接体用Mn‒Cu尖晶石涂层的制备及其高温氧化导电性能. 腐蚀与防护, 2020, 41(1): 9 DOI: 10.11973/fsyfh-202001002

    Zhou T C, Ding J T, Lai Y B, et al. High temperature oxidation behavior and conductivity of prepared Mn‒Cu spinel coating for metal interconnects. Corros Prot, 2020, 41(1): 9 DOI: 10.11973/fsyfh-202001002

    [13]

    Stevenson J W, Yang Z G, Xia G G, et al. Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications. J Power Sources, 2013, 231(1-2): 256

    [14] 付倩倩, 通雁鹏. 基于曲面响应法的大气等离子喷涂La2Ce2O7涂层粒子特性与微观结构研究. 粉末冶金技术, 2020, 38(5): 13

    Fu Q Q, Tong Y P. Study on particle characteristics and microstructure of La2Ce2O7 coating by atmospheric plasma spraying based on the response surface method. Powder Metall Technol, 2020, 38(5): 13

    [15]

    Liu Q, Dong X H, Xiao G L, et al. A novel electrode material for symmetrical SOFCs. Adv Mater, 2011, 22(48): 5478

    [16]

    Muñoz-García A B, Bugaris D E, Pavone M, et al. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6 ‒ δ, an electrode material for symmetric solid oxide guel cells. J Am Chem Soc, 2012, 43(33): 6826

    [17] 付长璟. 中温平板式 SOFC 合金连接体的制备及其性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2007

    Fu C J. Study on Preparation and Properties of Alloy Interconnects for Intermediate Temperature SOFC [Dissertation]. Harbin: Harbin Institute of Technology, 2007

    [18] 代宁宁. 新型Sr2Fe1.5Mo0.5O6‒δ基固体氧化物燃料电池阴极材料的研究[学位论文]. 北京: 北京理工大学, 2014

    Dai N N. Studies on Novel Solid Oxide Fuel Cell Cathode Materials Based on Sr2Fe1.5Mo0.5O6 ‒δ [Dissertation]. Beijing: Beijing Institute of Technology, 2014

    [19]

    Ebrahimifar H, Zandrahimi M. Oxidation and electrical behavior of AISI 430 coated with cobalt spinels for SOFC interconnect applications. Surf Coat Technol, 2011, 206(1): 75 DOI: 10.1016/j.surfcoat.2011.06.046

    [20]

    Wu J W, Johnson C D, Jiang Y, et al. Pulse plating of Mn‒Co alloys for SOFC interconnect applications. Electrochim Acta, 2008, 54(2): 793 DOI: 10.1016/j.electacta.2008.06.057

    [21]

    Zhang W, Yan D, Yang J, et al. A novel low Cr-containing Fe–Cr–Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells. J Power Sources, 2014, 271: 25 DOI: 10.1016/j.jpowsour.2014.07.170

    [22]

    Conceicao L D, Dessemond L, Djurado E, et al. Thin films of La0.7Sr0.3MnO3‒δ dip-coated on Fe‒Cr alloys for SOFC metallic interconnect. Int J Hydrogen Energy, 2013, 38(35): 15335 DOI: 10.1016/j.ijhydene.2013.09.048

    [23]

    Sun Z, Wang R, Nikiforov A Y, et al. CuMn1.8O4 protective coatings on metallic interconnects for prevention of Cr-poisoning in solid oxide fuel cells. J Power Sources, 2018, 378: 125 DOI: 10.1016/j.jpowsour.2017.12.031

    [24]

    Cheng F, Sun J. Fabrication of a double-layered Co‒Mn‒O spinel coating on stainless steel via the double glow plasma alloying process and preoxidation treatment as SOFC interconnect. Int J Hydrogen Energy, 2019, 44(33): 18415 DOI: 10.1016/j.ijhydene.2019.05.060

    [25]

    Saeidpour F, Zandrahimi M, Ebrahimifar H. Pulse electrodeposition of cobalt/zirconia coatings: oxidation and electrical performance of ferritic stainless steel interconnects. Oxid Met, 2020, 93(1): 83

  • 期刊类型引用(6)

    1. 赵子锐,段绪星,陈青,任维泽,林益文,裴泽宇. 镍基合金激光熔覆研究进展及其在反应堆的应用展望. 激光杂志. 2025(02): 1-9 . 百度学术
    2. 姚开礼,高丽. 激光编程技术在汽车模具淬火过程中的参数优化与控制研究. 模具制造. 2024(01): 92-95 . 百度学术
    3. 范仲华. 电磁场辅助激光熔覆制备IN718涂层的组织及性能研究. 工程机械. 2024(03): 158-162+13 . 百度学术
    4. 王进才,霍晓阳,李雷,樊贝贝,米国发. 激光增材再制造20G/Inconel625复合板工艺研究. 特种铸造及有色合金. 2022(01): 99-103 . 百度学术
    5. 王贵. 镍基合金粉末热喷涂后收缩气孔的研究. 冶金与材料. 2022(04): 10-12 . 百度学术
    6. 王进才,霍晓阳,李雷,樊贝贝,米国发. Inconel625及其去Mo和Alloy686粉末激光熔凝性能研究. 特种铸造及有色合金. 2022(10): 1256-1262 . 百度学术

    其他类型引用(5)

图(10)  /  表(1)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  127
  • PDF下载量:  53
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-12-21
  • 网络出版日期:  2021-03-26
  • 刊出日期:  2021-04-26

目录

/

返回文章
返回