高级检索

ARZ陶瓷颗粒增强316L不锈钢复合材料的制备及性能

章伟强, 袁鸽成, 王娟, 罗铁钢

章伟强, 袁鸽成, 王娟, 罗铁钢. ARZ陶瓷颗粒增强316L不锈钢复合材料的制备及性能[J]. 粉末冶金技术, 2023, 41(3): 268-274. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010001
引用本文: 章伟强, 袁鸽成, 王娟, 罗铁钢. ARZ陶瓷颗粒增强316L不锈钢复合材料的制备及性能[J]. 粉末冶金技术, 2023, 41(3): 268-274. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010001
ZHANG Weiqiang, YUAN Gecheng, WANG Juan, LUO Tiegang. Preparation and performance of ARZ ceramic particle reinforced 316L stainless steel composites[J]. Powder Metallurgy Technology, 2023, 41(3): 268-274. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010001
Citation: ZHANG Weiqiang, YUAN Gecheng, WANG Juan, LUO Tiegang. Preparation and performance of ARZ ceramic particle reinforced 316L stainless steel composites[J]. Powder Metallurgy Technology, 2023, 41(3): 268-274. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010001

ARZ陶瓷颗粒增强316L不锈钢复合材料的制备及性能

基金项目: 广东省科学院建设国内一流研究机构行动专项资助项目(2019GDASYL-0501014);广东省科技计划资助项目(2018dr013);广东特支计划资助项目(2017TQ04C645)
详细信息
    通讯作者:

    袁鸽成: E-mail: gchyuan@gdyt.edu.cn

  • 中图分类号: TB333

Preparation and performance of ARZ ceramic particle reinforced 316L stainless steel composites

More Information
  • 摘要:

    采用粉末冶金工艺制备了Al2O3增强ZrO2(alumina reinforced zirconia,ARZ)陶瓷颗粒增强316L不锈钢(316L不锈钢/ARZ)复合材料,研究了ARZ陶瓷颗粒体积分数对316L不锈钢/ARZ复合材料的微观组织、相对密度、硬度、耐磨性的影响。结果表明:当ARZ陶瓷颗粒体积分数为20%时,复合材料的相对密度达到97.53%,与不锈钢基体相当;继续加入ARZ陶瓷,陶瓷颗粒发生团聚降低了复合材料相对密度。316L不锈钢/ARZ复合材料的硬度随着ARZ陶瓷颗粒体积分数的增高而增大,当ARZ陶瓷颗粒的体积分数为60%时,复合材料的硬度达到最大值HRB 96.8。复合材料耐磨性优于不锈钢基体,其中含有体积分数为60%ARZ陶瓷颗粒的复合材料体积磨损率较基体减少了4.2倍;随着ARZ陶瓷颗粒含量的增加,复合材料的耐磨性提高,复合材料的磨损机理主要为316L不锈钢的剥落。

    Abstract:

    Alumina reinforced zirconia (ARZ) ceramic particle reinforced 316L stainless steel (316L stainless steel/ARZ) composites were prepared by powder metallurgy. The effects of ARZ ceramic particle volume fraction on the microstructure, relative density, hardness, and wear resistance of 316L stainless steel/ARZ composites were investigated. The results show that, when the ARZ volume fraction is 20%, the relative density of the composite reaches 97.53%, which is similar to that of the stainless steel matrix. The agglomeration of ceramic particles decreases the relative density of the composite when the ARZ ceramic particles are added. The hardness of 316L stainless steel/ARZ composites increases with the increase of ARZ volume fraction. When the volume fraction of ARZ ceramic particles is 60%, the hardness of composites reaches the maximum as HRB 96.8. The wear resistance of the composites is better than that of the stainless steel matrix, and the volume wear rate of the composites with the ARZ volume fraction of 60% is 4.2 times lower than that of the matrix. The wear resistance of the composites increases with the increase of ARZ ceramic particle content. The abrasion mechanism of 316L stainless steel/ARZ composites is mainly the desquamation of 316L stainless steel particles.

  • 图  1   原料粉末微观形貌:(a)ARZ;(b)316L不锈钢

    Figure  1.   Morphology of the raw material powders: (a) ARZ; (b) 316L stainless steels

    图  2   316L不锈钢/ARZ坯料脱脂烧结升温曲线

    Figure  2.   Debinding and sintering temperature curve of the 316L stainless steel/ARZ billets

    图  3   含不同体积分数ARZ复合材料扫描电子显微形貌:(a)0;(b)20%;(c)40%;(d)60%

    Figure  3.   SEM images of the composites with the different volume fraction of ARZ: (a) 0; (b) 20%; (c) 40%; (d) 60%

    图  4   含有体积分数40%ARZ的复合材料界面放大图及能谱面扫图

    Figure  4.   Magnified view and the EDS mapping images of the composites interface with the ARZ volume fraction of 40%

    图  5   含不同ARZ体积分数的复合材料相对密度

    Figure  5.   Relative density of the composites with the different volume fraction of ARZ

    图  6   含不同体积分数ARZ复合材料的硬度

    Figure  6.   Hardness of the composites with the different volume fraction of ARZ

    图  7   含有不同体积分数ARZ的复合材料的体积磨损率

    Figure  7.   Volume wear rate of composites with different volume fraction of ARZ

    图  8   含不同体积分数ARZ复合材料的摩擦系数

    Figure  8.   Friction coefficient of the composites with the different volume fraction of ARZ

    图  9   含不同体积分数ARZ复合材料的磨损形貌:(a)0;(b)20%;(c)40%;(d)60%

    Figure  9.   Wear morphology of the composites with the different volume fraction of ARZ: (a) 0; (b) 20%; (c) 40%; (d) 60%

    表  1   图9(c)放大图中能谱分析(质量分数)

    Table  1   EDS analysis of the enlarged view in Fig.9(c) %

    AlZrFeCrO
    16.0331.901.753.7546.57
    下载: 导出CSV
  • [1] 郭英奎, 李东波, 周玉, 等. ZrO2(2Y)/316L不锈钢复合材料的微观组织. 中国有色金属学报, 2003, 13(4): 963

    Guo Y K, Li D B, Zhou Y, et al. Microstructure of ZrO2(2Y)/316L stainless steel composites. Chin J Nonferrous Met, 2003, 13(4): 963

    [2] 郭英奎, 赵晓华, 周玉, 等. ZrO2/316L不锈钢复合材料的SEM分析. 哈尔滨理工大学学报. 2002, 7(1): 50

    Guo Y K, Zhao X H, Zhou Y, et al. The SEM analysis of ZrO2/316L stainless steel composites. J Harbin Univ Sci Technol, 2002, 7(1): 50

    [3]

    Kuruvilla A K, Prasad K S, Bhanuprasad V V, et al. Microstructure-property correlation in Al/TiB2(XD) composites. Scr Metall Mater, 1990, 24(5): 873 DOI: 10.1016/0956-716X(90)90128-4

    [4] 邓陈虹, 葛启录, 范爱琴. 粉末冶金金属基复合材料的研究现状及发展趋势. 粉末冶金工业, 2011, 21(1): 54

    Deng C H, Ge Q L, Fan A Q. Present research status and trend of metal matrix composites by powder metallurgy. Powder Metall Ind, 2011, 21(1): 54

    [5]

    Kaczmar J W, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials. J Mater Process Technol, 2000, 106(1-3): 58 DOI: 10.1016/S0924-0136(00)00639-7

    [6]

    Zhang L B, Hai J T. Metal matrix composites in China. J Mater Process Technol, 1998, 75(1-3): 1 DOI: 10.1016/S0924-0136(97)00236-7

    [7] 曹勇家. 金属注射成形不锈钢. 粉末冶金技术, 2000, 18(4): 274

    Cao Y J. Metal injection molding of stainless steels. Powder Metall Technol, 2000, 18(4): 274

    [8] 郭振文, 张文泉, 刘雪峰, 等. 316L不锈钢/Y-PSZ复合材料摩擦磨损特性. 工程科学学报, 2008, 30(7): 740

    Guo Z W, Zhang W Q, Liu X F, et al. Friction wear behaviors of 316L stainless steel/Y-PSZ composites. Chin J Eng, 2008, 30(7): 740

    [9] 蒲泽林, 褚景春, 毛雪平. 颗粒增强金属基复合材料的制备方法综述. 现代电力, 2002, 19(6): 31

    Pu Z L, Chu J L, Mao X P. Summarization on preparation for particle reinforced metal matrix composites. Mod Electr Power, 2002, 19(6): 31

    [10]

    Luo Z C, Ning J P, Wang J, et al. Microstructure and wear properties of TiC-strengthened high-manganese steel matrix composites fabricated by hypereutectic solidification. Wear, 2019, 432-433: 202970 DOI: 10.1016/j.wear.2019.202970

    [11] 田常娟, 何新波, 梅敏, 等. 粉末注射成形制备Si3N4颗粒增强316L不锈钢. 工程科学学报, 2011, 33(11): 1373

    Tian C J, He X B, Mei M, et al. Si3N4 particle-reinforced 316L stainless steel prepared by powder injection molding. Chin J Eng, 2011, 33(11): 1373

    [12] 任澍忻, 陈文革, 冯涛, 等. 粉末冶金制备碳纤维增强铁‒铜基摩擦材料的组织与性能. 粉末冶金技术, 2020, 38(2): 104

    Ren S X, Chen W G, Feng T, et al. Microstructure and properties of carbon fiber reinforced Fe‒Cu based friction materials prepared by powder metallurgy. Powder Metall Technol, 2020, 38(2): 104

    [13] 马建朝. ZTA颗粒增强高锰钢复合材料制备及其性能研究[学位论文]. 西安: 西安理工大学, 2019

    Ma J C. Preparation and Properties of ZTA Particle Reinforced High Manganess Steel Composites [Dissertation]. Xi’ an: Xi’ an University of Technology, 2019

    [14] 潘超梅. 316L不锈钢粉末注射成形模拟及实验研究[学位论文]. 昆明: 昆明理工大学, 2016

    Pan C M. Simulation and Experimental Study on Injection Molding of 316L Stainless Steel Powder [Dissertation]. Kunming: Kunming University of Science and Technology, 2016

    [15] 卢博, 朱建锋, 方媛, 等. 原位合成SiC对铝基复合材料微观组织和力学性能的影响. 粉末冶金技术, 2020, 38(1): 42

    Lu B, Zhu J F, Fang Y, et al. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis. Powder Metall Technol, 2020, 38(1): 42

图(9)  /  表(1)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  62
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-14
  • 录用日期:  2021-03-14
  • 网络出版日期:  2023-06-20
  • 刊出日期:  2023-06-27

目录

    /

    返回文章
    返回