高级检索

超音速等离子喷涂Al2O3与Al2O3-13%TiO2涂层热震性能

付倩倩, 通雁鹏

付倩倩, 通雁鹏. 超音速等离子喷涂Al2O3与Al2O3-13%TiO2涂层热震性能[J]. 粉末冶金技术, 2023, 41(4): 378-384. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010013
引用本文: 付倩倩, 通雁鹏. 超音速等离子喷涂Al2O3与Al2O3-13%TiO2涂层热震性能[J]. 粉末冶金技术, 2023, 41(4): 378-384. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010013
FU Qianqian, TONG Yanpeng. Thermal shock resistance of Al2O3 and Al2O3-13%TiO2 coatings deposited by supersonic atmospheric plasma spraying[J]. Powder Metallurgy Technology, 2023, 41(4): 378-384. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010013
Citation: FU Qianqian, TONG Yanpeng. Thermal shock resistance of Al2O3 and Al2O3-13%TiO2 coatings deposited by supersonic atmospheric plasma spraying[J]. Powder Metallurgy Technology, 2023, 41(4): 378-384. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010013

超音速等离子喷涂Al2O3与Al2O3-13%TiO2涂层热震性能

详细信息
    通讯作者:

    付倩倩: E-mail: fuqianqian716@163.com

  • 中图分类号: TG174.4

Thermal shock resistance of Al2O3 and Al2O3-13%TiO2 coatings deposited by supersonic atmospheric plasma spraying

More Information
  • 摘要:

    采用超音速等离子喷涂工艺在不锈钢基体上制备了FeAl/Al2O3、FeCrAl/Al2O3、FeAl/Al2O3-13%TiO2、FeCrAl/Al2O3-13%TiO2四种涂层,通过扫描电镜表征微观结构,图像分析技术测量孔隙率,多峰法计算α-Al2O3质量分数,并测试了涂层的抗热震性能和结合强度。结果表明:超音速等离子喷涂制备的Al2O3涂层中α-Al2O3的质量分数约为40.3%~42.5%,涂层孔隙率约为3.47%~3.52%,制备的Al2O3-13%TiO2涂层中α-Al2O3的质量分数约为24.0%~29.7%,涂层孔隙率约为3.12%~3.31%。水淬热震实验(800 ℃/保温30 min)表明,FeCrAl/Al2O3涂层的抗热震性能最优,FeCrAl/Al2O3-13%TiO2涂层抗热震性能次之,FeAl/Al2O3涂层与FeAl/Al2O3-13%TiO2涂层抗热震性能最差。

    Abstract:

    The thermal shock resistance of FeAl/Al2O3, FeCrAl/Al2O3, FeAl/Al2O3-13%TiO2, and FeCrAl/Al2O3-13%TiO2 coatings deposited by supersonic atmospheric plasma spraying (SAPS) on the stainless steel matrix was investigated in this paper. The microstructure of the coatings was characterized by scanning electron microscope, the porosity was measured by image analysis, the mass fraction of α-Al2O3 was calculated by multi peak method, and the bonding strength was tested. The results show that, the mass fraction of α-Al2O3 in Al2O3 coating is 40.3%~42.5%, the porosity is 3.47%~3.52%; the mass fraction of α-Al2O3 in Al2O3-13%TiO2 coating is about 24.0%~29.7%, the porosity is 3.12%~3.31%. The results of water-quenching tests at 800 ℃ for 30 min show that, the FeCrAl/Al2O3 coating presents the highest thermal shock resistance, and the FeCrAl/Al2O3-13%TiO2 coating takes the second place. The FeAl/Al2O3 and FeAl/Al2O3-13%TiO2 coatings exhibite the same thermal shock resistance, which are the worst in four kinds of coatings.

  • 难熔金属通常指熔点在2000 ℃以上的金属,主要包括钨(W)、钼(Mo)、钽(Ta)、铌(Nb)和铼(Re)等,除了铼为密排六方晶格,其余均为体心立方晶格。难熔金属具有高熔点、高强度、低热膨胀系数、低电阻率、良好的热稳定性等优异的性质,在航空航天、电子、核工业、半导体照明、医疗、高温高压装备等领域具有不可替代的作用。典型的难熔金属产品包括钨坩埚/钨管、高温炉热区元件、铼发热元件、高纯靶材(钨、钼、钨钛合金)等。自钨灯丝的问世至今,难熔金属已经过了100多年的发展,但是新的难熔金属材料、新的制备工艺和新的应用领域还在不断涌现,性能仍在不断提升。例如,在高温下具有良好的相稳定性和迟滞扩散效应的难熔高熵合金、高熵碳化物等新型金属结构材料逐步迸发出新的活力;烧结过程分阶段调控等新技术为难熔金属的晶粒尺寸控制提供了新的途径;围绕复杂制品的新型成形技术也成为国内外的研究热点。随着航天航空等高技术领域的飞速发展,对难熔金属制品的综合性能要求越来越高,并且提出了多样化的性能需求,使难熔金属领域成为一个新材料、新工艺、新应用交织的充满活力的研究领域,同时也是一个充满挑战的研究领域。需要围绕难熔金属制备过程中的共性科学和技术问题开展深入研究,包括高分散性纳米难熔金属粉体的制备、近球形粉体的制备与改性处理、高致密化和细晶化、高强韧化、晶粒均匀性调控及其影响因素、难熔金属的材料力学行为和形变微观机理、烧结过程的传质机理、杂质元素对组织性能的影响规律及作用机制、形变过程中的组织性能调控等。加大难熔金属组织性能调控及制备技术的原始创新力度,对推动我国难熔金属产业的进步与发展具有重要意义。

    本专辑邀请了国内在难熔金属材料研究和产业化领域的优势单位,如安泰科技股份有限公司、安泰天龙钨钼科技有限公司、金堆城钼业股份有限公司、厦门虹鹭钨钼工业有限公司、矿冶科技集团有限公司、株洲硬质合金集团有限公司、北京科技大学、北京工业大学、中南大学、西安建筑科技大学、合肥工业大学等,14篇稿件涵盖了难熔金属粉体制备、难熔金属的强韧化、形变组织的调控及过程模拟等基础问题,以及大尺寸钨管、钨坩埚、难熔金属靶材、隔热屏等产品的开发。

    本专辑召集人章林老师来自北京科技大学曲选辉教授团队,致力于高性能粉体材料近终成形与形性调控新原理新方法研究,围绕国防和民用高技术领域的重大需求,建立了多种特种粉体材料注射成形新工艺,在难熔金属的高致密化和细晶化、形变组织的形成机理及均匀性调控等方面开展了较深入的研究。获2019年国家技术发明二等奖(排名第3)、2019年和2018年中国有色金属工业技术发明一等奖(排名第1、第2)、2018年教育部技术发明一等奖(排名第3)、2020年冶金青年科科技奖。

  • 图  1   原料粉末形貌:(a)Al2O3;(b)FeCrAl;(c)FeAl;(d)Al2O3-13%TiO2

    Figure  1.   Microstructure of the original powders: (a) Al2O3; (b) FeCrAl; (c) FeAl; (d) Al2O3-13%TiO2

    图  2   超音速等离子工艺沉积涂层截面形貌:(a)FeAl/Al2O3;(b)FeCrAl/Al2O3;(c)FeAl/Al2O3-13%TiO2;(d)FeCrAl/Al2O3-13%TiO2

    Figure  2.   Cross-sectional microstructures of the as-sprayed coatings: (a) FeAl/Al2O3; (b) FeCrAl/Al2O3; (c) FeAl/Al2O3-13%TiO2; (d) FeCrAl/Al2O3-13%TiO2

    图  3   涂层X射线衍射谱:(a)FeAl/Al2O3;(b)FeCrAl/Al2O3;(c)FeAl/Al2O3-13%TiO2;(d)FeCrAl/Al2O3-13%TiO2

    Figure  3.   XRD patterns of the coatings: (a) FeAl/Al2O3; (b) FeCrAl/Al2O3; (c) FeAl/Al2O3-13%TiO2; (d) FeCrAl/Al2O3-13%TiO2

    图  4   不同热循环次数后涂层表面形貌:(a)FeAl/Al2O3;(b)FeCrAl/Al2O3;(c)FeAl/Al2O3-13%TiO2;(d)FeCrAl/Al2O3-13%TiO2

    Figure  4.   Surface morphology of the coatings after the different thermal cycles: (a) FeAl/Al2O3; (b) FeCrAl/Al2O3; (c) FeAl/Al2O3-13%TiO2; (d) FeCrAl/Al2O3-13%TiO2

    表  1   涂层喷涂参数

    Table  1   Spraying parameters for the coatings

    涂层 电流 / A 电压 / V 氩气流量 / (L·min−1) 氢气流量 / (L·min−1) 喷涂距离 / mm 粒子温度 / ℃ 粒子速度 / (m·s−1)
    Al2O3 312 133 65.2 16.7 90 3250.70±2.18 399.72±1.11
    FeAl 380 120 70.0 20.4 90
    Al2O3-13%TiO2 366 131 65.0 15.4 90 3242.03±2.49 387.91±2.05
    FeCrAl 380 130 65.0 12.4 100
    下载: 导出CSV

    表  2   涂层喷涂参数

    Table  2   Spraying parameters for the coatings

    样品 衍射强度(计次) α-A12O3质量分数 / %
    (012) (104) (110) (113) (116)
    纯α-A12O3 2443 3519 1460 3607 2912
    FeAl/Al2O3 878 1039 1262 956 946 42.5
    FeCrAl/Al2O3 700 1231 1376 1014 456 40.3
    FeAl/Al2O3-13%TiO2 695 548 670 456 505 24.0
    FeCrAl/Al2O3-13%TiO2 787 704 810 671 648 29.7
    下载: 导出CSV
  • [1]

    Halim Z A A, Ahmad N, Hanapi M F, et al. Rapid surface treatment of grey cast iron for reduction of friction and wear by alumina coating using gas tunnel plasma spray. Mater Chem Phys, 2020, 260: 124

    [2] 何明涛, 孟惠民, 王宇超, 等. 新型热障涂层材料及其制备技术的研究与发展. 粉末冶金技术, 2019, 37(1): 62 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.011

    He M T, Meng H M, Wang Y C, et al. Research and development of advanced thermal barrier coating materials and preparation technology. Powder Metall Technol, 2019, 37(1): 62 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.011

    [3]

    Zeng Y, Lee S W, Ding C X. Plasma spray coatings in different nano size alumina. Mater Lett, 2002, 57: 495 DOI: 10.1016/S0167-577X(02)00818-2

    [4] 胡立, 张桂凯, 唐涛. FeAl/Al2O3阻氚涂层表面Al2O3薄膜形成机制与低温制备技术的研究进展. 机械工程材料, 2019, 43(6): 1

    Hu L, Zhang G K, Tang T. Research progress on formation mechanism and low temperature preparation technology of Al2O3 film on surface of FeAl/Al2O3 tritium permeation barrier. Mater Mech Eng, 2019, 43(6): 1

    [5] 路学成, 阎殿然, 杨勇, 等. 等离子喷涂纳米Al2O3-13%TiO2涂层热学特性研究. 兵器材料科学与工程, 2011, 34(3): 9 DOI: 10.3969/j.issn.1004-244X.2011.03.003

    Lu X C, Yan D R, Yang Y, et al. Thermal behavior of nanostructured Al2O3-13%TiO2 ceramic coatings deposited by plasma spraying. Ordn Mater Sci Eng, 2011, 34(3): 9 DOI: 10.3969/j.issn.1004-244X.2011.03.003

    [6]

    Yilmaz R, Kurt A O, Demir A, et al. Effects of TiO2 on the mechanical properties of the Al2O3-TiO2 plasma sprayed coating. J Eur Ceram Soc, 2007, 27: 1319 DOI: 10.1016/j.jeurceramsoc.2006.04.099

    [7] 王超, 宋仁国. 离子喷涂纳米Al2O3/TiO2陶瓷复合涂层高温氧化和热震性能研究. 热加工工艺, 2012, 41(14): 145 DOI: 10.3969/j.issn.1001-3814.2012.14.041

    Wang C, Song R G. High temperature oxidation and thermal shock of plasma sprayed nano-Al2O3/TiO2 ceramic coating. Hot Working Technol, 2012, 41(14): 145 DOI: 10.3969/j.issn.1001-3814.2012.14.041

    [8] 徐心洁, 贺毅, 马东林, 等. 等离子喷涂Al2O3–13TiO2复合陶瓷涂层的组织及热氧化性能的研究. 表面技术, 2010, 39(1): 15 DOI: 10.3969/j.issn.1001-3660.2010.01.005

    Xu X J, He Y, Ma D L, et al. Study on the structure and thermal oxidization properties of plasma sprayed Al2O3-13TiO2 composite ceramic coatings. Surf Technol, 2010, 39(1): 15 DOI: 10.3969/j.issn.1001-3660.2010.01.005

    [9]

    Bai Y, Zhao L, Qu Y M, et al. Particle in-flight behavior and its influence on the microstructure and properties of supersonic-atmospheric-plasma-sprayed nanostructured thermal barrier coatings. J Alloys Compd, 2015, 644: 873 DOI: 10.1016/j.jallcom.2015.05.068

    [10]

    Bai Y, Zhao L, Wang Y, et al. Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying. J Alloys Compd, 2015, 632: 794 DOI: 10.1016/j.jallcom.2015.01.265

    [11]

    Shaw L L. Thermal residual stresses in plates and coatings composed of multi-layered and functionally graded materials. Composites Part B, 1998, 29(3): 199 DOI: 10.1016/S1359-8368(97)00029-2

    [12]

    Yang Y Z, Liu Z G, Liu Z Y, et al. Interfacial phenomena in the plasma spraying Al2O3+13wt.% TiO2 ceramic coating. Thin Solid Films, 2001, 388(1-2): 208 DOI: 10.1016/S0040-6090(01)00806-9

    [13]

    Wang Y, Tian W, Yang Y, et al. Investigation of stress field and failure mode of plasma sprayed Al2O3-13%TiO2 coatings under thermal shock. Mater Sci Eng A, 2009, 516: 103 DOI: 10.1016/j.msea.2009.03.041

    [14]

    Irisawa T, Matsumoto H. Thermal shock resistance and adhesion strength of plasma-sprayed alumina coating on cast iron. Thin Solid Films, 2006, 509(1-2): 141 DOI: 10.1016/j.tsf.2005.09.132

    [15]

    Jordan E H, Gell M, Sohn Y H, et al. Fabrication and evaluation of plasma sprayed nanostructured alumina-titania coatings with superior properties. Mater Sci Eng A, 2001, 301(1): 80 DOI: 10.1016/S0921-5093(00)01382-4

    [16]

    Lu X C, Yan D R, Yang Y, et al. Phase evolution of plasma sprayed Al2O3-13%TiO2 coatings derived from nanocrystalline powders. Trans Nonferrous Met Soc China, 2013, 23(10): 2951 DOI: 10.1016/S1003-6326(13)62819-8

    [17]

    Sivakumar G, Dusane R O, Joshi S V. A novel approach to process phase pure α-A2O3 coatings by solution precursor plasma spraying. J Eur Ceram Soc, 2013, 33(13-14): 2823 DOI: 10.1016/j.jeurceramsoc.2013.05.005

    [18]

    Lang F, Yu Z, Gedevanishvili S, et al. Isothermal oxidation behavior of a sheet alloy of Fe-40at.%Al at temperatures between 1073 and 1473 K. Intermetallics, 2003, 11(7): 697

    [19] 张志刚, 张学军, 潘太军, 等. FeAl和FeCrAl合金在高温下的初期氧化. 钢铁研究, 2007, 35(3): 38 DOI: 10.3969/j.issn.1001-1447.2007.03.011

    Zhang Z G, Zhang X J, Pan T J, et al. Initial stage oxidation of Fe-Al and Fe-Cr-Al alloys at high temperature. Res Iron Steel, 2007, 35(3): 38 DOI: 10.3969/j.issn.1001-1447.2007.03.011

    [20]

    Yang K, Chen J, Hao F, et al. Stress-induced phase transformation and amorphous-to-nanocrystalline transition in plasma-sprayed Al2O3 coating with relative low temperature heat treatment. Surf Coat Technol, 2014, 253: 277 DOI: 10.1016/j.surfcoat.2014.05.056

图(4)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-21
  • 网络出版日期:  2021-08-29
  • 刊出日期:  2023-08-27

目录

    /

    返回文章
    返回