高级检索

热等静压烧结温度对Mo–Na合金性能影响

王娜, 朱琦, 周莎, 席莎, 武洲, 吴吉娜, 张晓, 刘仁智, 崔玉青, 王锦

王娜, 朱琦, 周莎, 席莎, 武洲, 吴吉娜, 张晓, 刘仁智, 崔玉青, 王锦. 热等静压烧结温度对Mo–Na合金性能影响[J]. 粉末冶金技术, 2022, 40(4): 356-361. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020007
引用本文: 王娜, 朱琦, 周莎, 席莎, 武洲, 吴吉娜, 张晓, 刘仁智, 崔玉青, 王锦. 热等静压烧结温度对Mo–Na合金性能影响[J]. 粉末冶金技术, 2022, 40(4): 356-361. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020007
WANG Na, ZHU Qi, ZHOU Sha, XI Sha, WU Zhou, WU Ji-na, ZHANG Xiao, LIU Ren-zhi, CUI Yu-qing, WANG Jin. Effect of hot isostatic pressing sintering temperature on the properties of Mo–Na alloys[J]. Powder Metallurgy Technology, 2022, 40(4): 356-361. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020007
Citation: WANG Na, ZHU Qi, ZHOU Sha, XI Sha, WU Zhou, WU Ji-na, ZHANG Xiao, LIU Ren-zhi, CUI Yu-qing, WANG Jin. Effect of hot isostatic pressing sintering temperature on the properties of Mo–Na alloys[J]. Powder Metallurgy Technology, 2022, 40(4): 356-361. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020007

热等静压烧结温度对Mo–Na合金性能影响

基金项目: 陕西省重点研发计划资助项目(2020ZDLGY12-07)
详细信息
    通讯作者:

    王娜: E-mail: biyewangna@163.com

  • 中图分类号: TG146.4

Effect of hot isostatic pressing sintering temperature on the properties of Mo–Na alloys

More Information
  • 摘要:

    采用热等静压烧结法制备Mo–Na合金,研究了热等静压烧结温度对Mo–Na合金显微组织、硬度、密度及Na质量分数的影响,分析了Mo–Na合金热等静压烧结的致密化过程。结果表明:采用热等静压烧结法制备的Mo–Na合金显微组织细小均匀,平均晶粒尺寸在10 μm以下。随着热等静压烧结温度的升高,相对密度及硬度随之升高,在1100 ℃时达到最大,分别为99.58%和HRA 54.50,热等静压过程中液相的形成对Mo–Na合金的致密化起到了重要作用。热等静压过程很好地避免了低熔点Na金属高温烧结过程中的挥发,在1100 ℃烧结后Na质量分数基本无变化。

    Abstract:

    Mo–Na alloys were prepared by the hot isostatic pressing (HIP) sintering. The effects of HIP sintering temperature on the microstructure, hardness, density, and Na mass fraction of the Mo–Na alloys were studied. The densification process of the Mo–Na alloys sintered by HIP was analyzed. The results show that, the microstructure of the Mo–Na alloys prepared by HIP sintering is ultrafine and uniform, the average grain size of the alloys is below 10 μm. With the increase of the HIP sintering temperature, the relative density and hardness increase and reach the maximum value at 1100 ℃, which is 99.58% and HRA 54.50, respectively. The liquid phase formation during HIP plays an important role in the densification of the Mo–Na alloys. The volatilization of the Na metals with the low melting point during the high temperature sintering is well avoided in the process of HIP, and the Na mass fraction is almost unchanged after sintering at 1100 ℃.

  • 图  1   不同烧结温度下Mo–Na合金的相对密度

    Figure  1.   Relative density of the Mo–Na allys at different sintering temperatures

    图  2   不同温度热等静压烧结样品金相组织:(a)700 ℃;(b)800 ℃;(c)900 ℃;(d)1000 ℃;(e)1100 ℃;(f)1200 ℃

    Figure  2.   Microstructure of the hot isostatic pressing sintered samples at different temperatures: (a) 700 ℃; (b) 800 ℃; (c) 900 ℃; (d) 1000 ℃; (e) 1100 ℃ ; (f) 1200 ℃

    图  3   不同温度热等静压烧结样品断口显微形貌:(a)700 ℃;(b)800 ℃;(c)900 ℃;(d)1000 ℃;(e)1100 ℃;(f)1200 ℃

    Figure  3.   Fracture morphology of the hot isostatic pressing sintered samples at different temperatures: (a) 700 ℃; (b) 800 ℃; (c) 900 ℃; (d) 1000 ℃; (e) 1100 ℃; (f) 1200 ℃

    图  4   Mo–Na合金的硬度及Na质量分数随温度的变化曲线

    Figure  4.   Hardness and Na mass fraction of the Mo–Na allys at different temperatures

    表  1   不同烧结工艺条件下Mo–Na合金化学成分(质量分数)

    Table  1   Chemical composition of the Mo–Na alloys in different sintering conditions %

    状态OCFeNiMgSiAlK
    粉末态0.1500.00220.00160.00100.00060.00100.00030.0032
    700 ℃热等静压烧结0.1300.00240.00200.00080.00060.00110.00030.0030
    800 ℃热等静压烧结0.1390.00260.00210.00080.00060.00100.00030.0028
    900 ℃热等静压烧结0.1390.00220.00230.00100.00060.00110.00030.0030
    1000 ℃热等静压烧结0.1390.00270.00200.00100.00060.00100.00030.0032
    1100 ℃热等静压烧结0.1390.00240.00180.00100.00060.00110.00030.0028
    1200 ℃热等静压烧结0.1390.00230.00180.00100.00060.00110.00030.0027
    1100 ℃真空热压烧结0.1800.00210.00180.00100.00060.00100.00030.0028
    下载: 导出CSV
  • [1] 刘晓剑, 王玲, 王宏芹, 等. CIGS薄膜太阳能电池研究新进展. 电子工艺技术, 2013, 34(5): 258

    Liu X J, Wang L, Wang H Q, et al. New progress in CIGS thin film solar cells. Electron Process Technol, 2013, 34(5): 258

    [2]

    Cheng S Q, Zhang K Z, Zhang Y X, et al. Effects of different Cs distribution in the film on the performance of CIGS thin film solar cells. Sol Energy Mater Sol Cells, 2021, 222: 110917 DOI: 10.1016/j.solmat.2020.110917

    [3]

    Blösch P, Nishiwakia S, Chirilă A, et al. Sodium-doped molybdenum back contacts for flexible Cu(In, Ga)Se2 solar cells. Thin Solid Films, 2013, 535: 214 DOI: 10.1016/j.tsf.2012.10.080

    [4] 彭寿, 王芸, 王伟. 最具发展前景的CIGS薄膜太阳能电池. 建材世界, 2010, 31(4): 1 DOI: 10.3963/j.issn.1674-6066.2010.04.001

    Peng S, Wang Y, Wang W. Most promising CIGS thin film solar cell. World Build Mater, 2010, 31(4): 1 DOI: 10.3963/j.issn.1674-6066.2010.04.001

    [5] 王正安. 铜铟镓硒薄膜太阳能电池CIGS吸收层的研究与制备[学位论文]. 上海: 华东师范大学, 2010

    Wang Z A. Studies and Preparation of Absorb Layer for CIGS Thin Film Solar Cells [Dissertation]. Shanghai: East China Normal University, 2010

    [6] 朱琦, 陈良斌, 王娜, 等. 真空热压烧结制备Mo–Na合金靶材的研究. 中国钼业, 2015, 39(6): 55

    Zhu Q, Chen L B, Wang N, et al. Preparation of Mo–Na targets by vacuum hot pressing technique. China Molybdenum Ind, 2015, 39(6): 55

    [7]

    Kim S C, Park H, Lee E W, et al. Role of Na in reaction pathways and kinetics of CuInSe2 formation from stacked binary precursors. Thin Solid Films, 2011, 519(21): 7250 DOI: 10.1016/j.tsf.2010.12.222

    [8]

    Rudmann D, Brémaud D, da Cunha A F, et al. Sodium incorporation strategies for CIGS growth at different temperatures. Thin Solid Films, 2005, 480-481: 55 DOI: 10.1016/j.tsf.2004.11.071

    [9]

    Shin Y M, Shin D H, Kim J H, et al. Effect of Na doping using Na2S on the structure and photovoltaic properties of CIGS solar cells. Curr Appl Phys, 2011, 11(Suppl 1): S59

    [10] 王波, 刘平, 李伟, 等. 铜铟镓硒(CIGS)薄膜太阳能电池的研究进展. 材料导报, 2011, 25(10): 54

    Wang B, Liu P, Li W, et al. Progress in research of CIGS thin film solar cells. Mater Rev, 2011, 25(10): 54

    [11] 关明鑫. 热等静压在粉末冶金中的应用. 天津冶金, 2001(5): 40 DOI: 10.3969/j.issn.1006-110X.2001.05.014

    Guan M X. Application of hot isostatic presses in power metallurgy. Tianjin Metall, 2001(5): 40 DOI: 10.3969/j.issn.1006-110X.2001.05.014

    [12] 谌启明, 杨靖, 单先裕, 等. 热等静压技术的发展及应用. 稀有金属与硬质合金, 2003, 31(2): 33 DOI: 10.3969/j.issn.1004-0536.2003.02.010

    Shen Q M, Yang J, Shan X Y, et al. Development and application of HIP technology. Rare Met Cement Carb, 2003, 31(2): 33 DOI: 10.3969/j.issn.1004-0536.2003.02.010

    [13] 林小辉, 李来平, 李斌, 等. 热等静压在稀有难熔金属产品制备中的应用. 粉末冶金工业, 2017, 27(3): 63

    Lin X H, Li L P, Li B, et al. Application of hot isostatic pressing in preparation of rare and refractory metal products. Powder Metall Ind, 2017, 27(3): 63

    [14] 韩凤麟. 粉末冶金/热等静压(PM HIP)零件的生产工艺与设计准则. 粉末冶金技术, 2016, 34(1): 62 DOI: 10.3969/j.issn.1001-3784.2016.01.012

    Han F L. The PM HIP parts process and design guidelines. Powder Metall Technol, 2016, 34(1): 62 DOI: 10.3969/j.issn.1001-3784.2016.01.012

    [15] Williams B. 近年来热等静压(HIP)处理与应用发展趋势. 韩凤麟, 译. 粉末冶金技术, 2014, 32(6): 464

    Williams B. Recent trends in hot isostatic pressing (HIP): processing and applications. Transl by Han F L. Powder Metall Technol, 2014, 32(6): 464

    [16] 王新锋, 贺卫卫, 朱纪磊, 等. 热等静压铁钴镍基高温合金的显微组织和力学性能. 粉末冶金技术, 2020, 38(5): 371

    Wang X F, He W W, Zhu J L, et al. Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing. Powder Metall Technol, 2020, 38(5): 371

    [17] 郭志俊, 林勇, 王文明, 等. 热等静压工艺对金属钼力学性能的影响. 兵器材料科学与工程, 2002, 25(4): 22 DOI: 10.3969/j.issn.1004-244X.2002.04.006

    Guo Z J, Lin Y, Wang W M, et al. Effect of HIP on physicomechanical properties of molybdenum. Ordnance Mater Sci Eng, 2002, 25(4): 22 DOI: 10.3969/j.issn.1004-244X.2002.04.006

    [18] 王娜, 朱琦, 曾毅, 等. Mo–Na合金烧结过程中的物相演变. 中国钼业, 2016, 40(3): 53

    Wang N, Zhu Q, Zeng Y, et al. Study on the phase transition of Mo–Na alloy during sintering process. China Molybdenum Ind, 2016, 40(3): 53

  • 期刊类型引用(6)

    1. Lebiao Yang,Xiaona Ren,Chao Cai,Pengju Xue,M.Irfan Hussain,Yusheng Shi,Changchun Ge. Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing. International Journal of Minerals, Metallurgy and Materials. 2023(01): 122-130 . 必应学术
    2. 王娜,朱琦,周莎,席莎,武洲,吴吉娜,张晓,刘仁智,崔玉青,王锦. 热等静压烧结温度对Mo–Na合金性能影响. 粉末冶金技术. 2022(04): 356-361 . 本站查看
    3. 车洪艳,王铁军,秦巍,董浩,张龙戈,张岩. 热等静压技术在金属材料加工领域的应用及发展趋势. 粉末冶金工业. 2022(04): 1-7 . 百度学术
    4. 林小辉,李来平,李斌,梁静,薛建嵘,张小明. 热等静压在稀有难熔金属产品制备中的应用. 粉末冶金工业. 2017(03): 63-67 . 百度学术
    5. 鲁宁宁,许磊,历长云,王有超,米国发. 石墨烯增强铝基复合材料制备技术研究进展. 粉末冶金技术. 2017(04): 310-318 . 本站查看
    6. 王冰,纪玮,邓太庆,赵丰,林岩松. TA15粉末冶金产品热等静压成形工艺过程的数值模拟. 宇航材料工艺. 2017(04): 19-22 . 百度学术

    其他类型引用(3)

图(4)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-04-29
  • 录用日期:  2021-04-29
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2022-08-27

目录

    /

    返回文章
    返回