高级检索

溶液燃烧法制备Mo–La2O3纳米粉体及烧结性能的研究

Study on the sintering properties of Mo–La2O3 nano-powders prepared by solution combustion method

  • 摘要: 利用溶液燃烧法制备氧化镧(La2O3)掺杂Mo粉前驱体,对前驱体粉末还原、烧结,研究La2O3掺杂量(质量分数)对Mo–La2O3合金性能的影响。结果表明,前驱体粉末在700 ℃下氢气气氛中还原,得到平均晶粒尺寸在100~220 nm的La2O3掺杂Mo粉。Mo–La2O3粉末经过1600 ℃放电等离子烧结后相对密度达95%以上,但随着La2O3掺杂量的提升,其相对密度逐渐降低。随着La2O3掺杂量的增加(质量分数在0~1.0%范围内),显微硬度先上升后下降。在La2O3掺杂量为0.7%时,Mo晶粒尺寸为500 nm左右,材料显微硬度最高,达到了HV0.2 564。

     

    Abstract: Molybdenum (Mo) precursor powders doped by lanthanum oxides (La2O3) were prepared by the ultra-rapid solution combustion synthesis method using the low-cost and non-toxic starting materials, and the precursor powders were reduced and sintered. The effect of La2O3 doping content (mass fraction) on the properties of Mo–La2O3 alloys was studied. The results show that, the La2O3 doped molybdenum powders with the average particle size of 100~220 nm are obtained by the reduction of the combustion precursor in the hydrogen atmosphere at 700 ℃. The relative density of La2O3 doped molybdenum alloys sintered at 1600 ℃ is over 95%. With the increase of La2O3 doping content (mass fraction in the range of 0~1.0%), the microhardness increases firstly and then decreases. When the La2O3 doping content is 0.7%, the grain size of Mo is about 500 nm, and the microhardness of the materials reaches the highest as HV0.2 564.

     

/

返回文章
返回