高级检索

HfC含量对钼钛锆合金显微组织和力学性能的影响

Effects of HfC content on microstructure and mechanical properties of titanium zirconium molybdenum alloys

  • 摘要: 在钼钛锆(titanium zirconium molybdenum alloy,TZM)合金粉末中分别添加质量分数为0、0.25%、0.50%、1.00%的HfC粉末颗粒,利用粉末冶金结合轧制变形的方法制备多元复合强化钼合金。通过金相组织观察、扫描电子显微镜形貌表征、能谱分析以及力学性能测试等手段,研究了HfC颗粒对TZM合金显微组织和力学性能的影响。结果表明,添加HfC颗粒可以抑制TZM合金晶粒在烧结过程中的长大,但添加量超过0.50%时,抑制效果减弱。当HfC颗粒质量分数为0.25%时,TZM合金的室温和高温抗拉强度最强,维氏硬度最高,塑性最优。

     

    Abstract: HfC particles with the mass fraction of 0, 0.25%, 0.50% and 1.00% were added into the titanium zirconium molybdenum (TZM) alloy powders, respectively. The composite reinforced molybdenum alloys were prepared by the powder metallurgy combined with the rolling deformation. The effects of the HfC particles on the microstructure and mechanical properties of the TZM alloys were studied by the metallographic analysis, the scanning electron microscopy, the energy spectrum analysis, and the mechanical properties tests. The results show that, the addition of HfC particles can inhibit the growth of TZM grains during the sintering process, however, when the mass fraction of HfC particles exceeds 0.50%, the inhibitory effect is weakened. When the mass fraction of HfC particles is 0.25%, the TZM alloys show the strongest tensile strength at room temperature and high temperature, the highest Vickers hardness, and the best plasticity.

     

/

返回文章
返回