-
摘要:
钛及钛合金因具有密度低、强度高、耐腐蚀、生物相容性好等特点被广泛应用于军事、航空、医疗等领域。传统铸锻钛合金生产工艺复杂,成本高,严重限制了钛合金的应用,粉末冶金技术制备钛合金降低了生产成本,有利于钛合金的推广应用。本文从钛及钛合金粉末的制备与成形工艺方面介绍了粉末冶金钛及钛合金的研究现状,并阐述了其发展趋势。
Abstract:Titanium and titanium alloys are widely used in military, aviation, and medical fields due to the low density, high strength, corrosion resistance, and good biocompatibility. The traditional production method of casting-forging titanium alloys is complicated and costly, which seriously limits the application of titanium alloys. Powder metallurgy technology can reduce the production cost of titanium alloys, which is expected to popularize the application of titanium alloys. The research status of titanium and titanium alloys by powder metallurgy was introduced in this paper from the aspects of powder preparation and forming process, and the development trend was described.
-
近代科学技术,特别是航空航天技术的发展,对所用工程材料性能提出了更高要求,如更高的比强度和比刚度,传统单一金属材料较难满足服役性能要求[1]。金属基复合材料既可保留金属材料的主要特性,又具有增强体的特性,有望满足高技术发展需求[2]。
金属基复合材料的研究始于20世纪60年代初期,80年代以来,美、日等国加大了对复合材料的研究开发,并采用粉末冶金法、熔铸技术、压力渗透技术等技术制备出性能优良的颗粒增强型铝基复合材料[3−4]。SiCp/Al复合材料由于轻质、高比强度、高比刚度、低热膨胀系数、良好的抗磨损等优点,被广泛用于航空航天、汽车、电子通讯、军事等领域。15%~20%SiCp/Al复合材料(体积分数)作为结构材料被应用于承载飞机上的承力结构件与电子元器件[5−6]。美国、日本、印度等国把SiCp/Al复合材料应用到汽车用连杆和缸套上[7−9]。我国于1981年启动金属基复合材料研究,多种复合材料产品在尖端国防领域得到应用,随着军民技术一体化需求的急剧增长,对金属基复合材料的研究更加迫切。
复合材料在制备过程中需要二次加工变形,国内外学者对铝合金和低体积分数SiCp/Al复合材料的研究较多[10−11]。Shao等[12]认为细小的SiCp和细小的2024Al粉末导致大量晶界的存在,使动态再结晶区域向低温和高应变速率区域移动,并且使得功率耗散效率系数的峰值减小。Rajamuthamil selvan和Ramanathan[13]研究了SiC颗粒体积分数对复合材料热变形行为的影响,发现SiC颗粒含量增多对复合材料的再结晶有促进作用。
材料固有的加工性与材料的化学组成、变形条件和变形量有关[14]。随着颗粒体积分数增加,加工难度增大,因此对中高体积分数(30%~60%)颗粒增强铝基复合材料热变形行为展开研究十分有意义。40%SiCp/Al复合材料(体积分数)作为一种新的结构材料有着广阔的发展前景,虽可以进行挤压、轧制和锻造等传统的热塑性变形加工,但可加工性能显着下降,要实现产业化仍需做大量的研究。以动态材料模型为基础的加工图和热变形本构方程是材料加工设计和优化的一种有效手段,已经得到了广泛应用[15−16]。本文在不同变形条件下对40%SiCp/Al复合材料(体积分数)进行等温热压缩实验研究,分析材料的热加工变形行为特征,并找出影响规律,提出优化加工参数,为优化该复合材料的热加工工艺提供指导。
1. 实验材料及方法
实验材料为碳化硅颗粒增强铝基复合材料(40%SiCp/Al,体积分数)。以平均直径10 μm的2024Al粉末为基体材料,增强体SiC颗粒粒径为15 μm,通过球磨混粉、冷压和热压烧结而成,复合材料的微观组织如图1所示。利用线切割将烧结后的试样加工成8 mm×12 mm的热模拟试样,用于等温热压缩变形。采用圆柱体单向压缩法,变形设备为Gleeble-1500D热模拟机,加热速率为10 ℃/s,变形温度分别为350、400、450和500 ℃,应变速率分别为0.01、0.10、1.00和10.00 s−1。压缩变形终了立即水淬,以便保留高温微观组织。总压缩量达到应变值0.7,即总变形程度为50%左右。在热变形过程中,在试样两端填充润滑剂以减少摩擦的影响。热模拟系统自动采集应力、应变、温度等数据。
2. 结果及分析
2.1 真应力-应变曲线
图2为40%SiCp/2024A1复合材料热变形过程的真应力-应变曲线。由图可见,在热变形过程中,当应变超过一定值后,复合材料呈现稳态流变特征,应变增加时真应力改变很小。在应变速率保持一定的情况下,随应变逐渐增加,流变应力先快速升高达到峰值,然后逐渐小幅下降,进入近似稳态流变状态。整体来看,稳态流变应力随变形温度升高而逐渐减小。在变形温度一定时,流变应力随应变速率的增大而增大,表明该复合材料有正的应变速率敏感性,即应变速率越大,复合材料实现稳态变形就越困难。图2(d)中显示复合材料在高应变速率变形时,应力-应变曲线上出现明显的连续波浪峰,表现出应力不连续屈服现象,这可能是由于材料发生动态再结晶和动态失效或者局部流变而引起的。
2.2 构建复合材料本构方程
基于模拟系统自动采集的应力、应变、温度等数据建立本构方程。当应力较低时如式(1)所示,当应力较高时如式(2)所示。
$$ \dot \varepsilon = {A_1}\exp \left( {\beta \sigma } \right)\exp \left( { - \frac{Q}{{RT}}} \right) $$ (1) $$ \dot \varepsilon = {A_2}{\sigma ^{{n_1}}}\exp \left( { - \frac{Q}{{RT}}} \right) $$ (2) 式中:
$ \dot \varepsilon $ 为应变速率,s−1;σ为流变应力,MPa;ε为应变;A1、A2、n1、β为材料常数;Q为变形激活能,kJ·mol−1;R为气体常数;T为变形温度,K。Sellars和Tegart提出式(3)适用于所有应力。Zener和Hollomon为更好地描述材料的热加工行为提出了Zener-Hollomon参数(Z参数),如式(4)所示。
$$ \dot \varepsilon = A{\left[ {\sinh \left( {\alpha \sigma } \right)} \right]^n}\exp \left( { - \frac{Q}{{RT}}} \right) $$ (3) $$ Z = \dot \varepsilon \exp \left( {\frac{Q}{{RT}}} \right) = A{\left[ {\sinh \left( {\alpha \sigma } \right)} \right]^n} $$ (4) 式中:A、α、n为材料常数。
为求解热变形激活能(Q),可以对式(1)~式(3)同时取对数,绘制线性方程。在高应力水平下,如式(5)所示,在低应力水平下,如式(6)所示,对所有应力水平,如式(7)所示。
$$ \ln \dot \varepsilon = \ln {A_1} + \beta \sigma - {Q \mathord{\left/ {\vphantom {Q {\left( {RT} \right)}}} \right. } {\left( {RT} \right)}} $$ (5) $$ \ln \dot \varepsilon = \ln {A_2} + {n_1}\ln \sigma - {Q \mathord{\left/ {\vphantom {Q {\left( {RT} \right)}}} \right. } {\left( {RT} \right)}} $$ (6) $$ \ln \dot \varepsilon = \ln A - {Q \mathord{\left/ {\vphantom {Q {\left( {RT} \right) + n\ln }}} \right. } {\left( {RT} \right) + n\ln }}\left[ {\sinh \left( {\alpha \sigma } \right)} \right] $$ (7) 对式(3)求偏导可得式(8)。为了求解本构方程,需求得材料常数n1、n、β、M值,其中ln
$ \dot \varepsilon $ -lnσ拟合曲线斜率是n1值,ln$ \dot \varepsilon $ -σ拟合曲线斜率是β值,ln[sinh(ασ)]−1/T斜率是M值,ln$ \dot \varepsilon $ -ln[sinh(ασ)]斜率平均值是n值。$$\begin{split} &Q = R\left\{ {{{\partial \ln \left[ {\sinh \left( {\alpha \sigma } \right)} \right]} \mathord{\left/ {\vphantom {{\partial \ln \left[ {\sinh \left( {\alpha \sigma } \right)} \right]} {\partial \left( {{1 \mathord{\left/ {\vphantom {1 T}} \right. } T}} \right)}}} \right. } {\partial \left( {{1 \mathord{\left/ {\vphantom {1 T}} \right. } T}} \right)}}} \right\} \cdot\\ &\qquad {\left\{ {{{\partial \ln \varepsilon } \mathord{\left/ {\vphantom {{\partial \ln \varepsilon } {\partial \ln \left[ {\sinh \left( {\alpha \sigma } \right)} \right]}}} \right. } {\partial \ln \left[ {\sinh \left( {\alpha \sigma } \right)} \right]}}} \right\}_T} = RnM\end{split} $$ (8) 将不同变形条件下峰值应力(σp,MPa)以及对应的
$ \dot \varepsilon $ 带入式(5)~式(7),可以绘制图3~图5,图中直线斜率的平均值即为本构方程中所求材料常数值,即M、n1、n、β,其中α=β/n1图 3 真应变为0.1时应力、应变速率和温度关系:(a)ln$ \dot \varepsilon $ -σ;(b)ln$ \dot \varepsilon $ -lnσ;(c)ln$ \dot \varepsilon $ -ln[sinh(ασ)];(d)ln[sinh(ασ)]-1/TFigure 3. Relationship between stress, stress rate, and temperature at true strain of 0.1: (a) ln$ \dot \varepsilon $ -σ; (b) ln$ \dot \varepsilon $ -lnσ; (c) ln$ \dot \varepsilon $ -ln[sinh(ασ)]; (d) ln[sinh(ασ)]-1/T图 4 真应变为0.3时应力、应变速率和温度关系:(a)ln$ \dot \varepsilon $ -σ;(b)ln$ \dot \varepsilon $ -lnσ;(c)ln$ \dot \varepsilon $ -ln[sinh(ασ)];(d)ln[sinh(ασ)]-1/TFigure 4. Relationship between stress, stress rate, and temperature at true strain of 0.3: (a) ln$ \dot \varepsilon $ -σ; (b) ln$ \dot \varepsilon $ -lnσ; (c) ln$ \dot \varepsilon $ -ln[sinh(ασ)]; (d) ln[sinh(ασ)]-1/T图 5 真应变为0.5时应力、应变速率和温度关系:(a)ln$ \dot \varepsilon $ -σ;(b)ln$ \dot \varepsilon $ -lnσ;(c)ln$ \dot \varepsilon $ -ln[sinh(ασ)];(d)ln[sinh(ασ)]-1/TFigure 5. Relationship between stress, stress rate, and temperature at true strain of 0.5: (a) ln$ \dot \varepsilon $ -σ; (b) ln$ \dot \varepsilon $ -lnσ; (c) ln$ \dot \varepsilon $ -ln[sinh(ασ)]; (d) ln[sinh(ασ)]-1/T将得到的n和M数据代入式(4)和式(8),可以求得不同真应力的Q值和Z值,再由lnZ-ln[sinh(ασ)]曲线计算得到截距lnA值,如图6和表1所示。
表 1 不同应变量时材料常数计算结果Table 1. Calculation results of the material constants at the different strainsε β n1 n M α / MPa−1 lnA Q / (kJ·mol−1) 0.1 0.134408 8.973713 6.656257 2882.649 0.015438 24.52115 157.288 0.3 0.133552 8.387507 6.149667 3088.224 0.016263 24.97749 157.903 0.5 0.134407 8.973715 6.601892 2865.210 0.015245 24.62439 157.273 根据表1可知复合材料常数的求解结果,将其代入式(3)和式(4)式可得本构方程。真应变为0.1时,变形激活能Q=157.288 kJ·mol−1,应力指数n=6.56,应力水平参数α=0.0154 MPa−1,结构因子A=4.46×1010。将上述材料参数代入式(3)和式(4),可得复合材料在真应力为0.1时的本构方程,如式(9)所示。
$$ \left\{ \begin{aligned} & {\dot \varepsilon = 4.46 \times {{10}^{10}}{{\left[ {\sinh \left( {0.0154\sigma } \right)} \right]}^{6.56}}\exp \left( { - \frac{{157.288}}{{RT}}} \right)} \\ & {Z = 4.46 \times {{10}^{10}}{{\left[ {\sinh \left( {0.0154\sigma } \right)} \right]}^{6.56}}{\text{ }}} \end{aligned} \right. $$ (9) 真应变为0.3时,变形激活能Q=157.903 kJ·mol−1,应力指数n=6.14,应力水平参数α=0. 0162 MPa−1,结构因子A=7.04×1010。将上述材料参数代入式(3)和式(4),可得复合材料在真应力为0.3时的本构方程,如式(10)所示。
$$ \left\{ \begin{aligned} & {\dot \varepsilon = 7.04 \times {{10}^{10}}{{\left[ {\sinh \left( {0.0162\sigma } \right)} \right]}^{6.14}}\exp \left( { - \frac{{157.903}}{{RT}}} \right)} \\ & {Z = 7.04 \times {{10}^{10}}{{\left[ {\sinh \left( {0.0162\sigma } \right)} \right]}^{6.14}}{\text{ }}} \end{aligned} \right. $$ (10) 真应变为0.5时,变形激活能Q=157.273 kJ·mol−1,应力指数n=6.60,应力水平参数α=0. 0152 MPa−1,结构因子A=4.95×1010。将上述材料参数代入式(3)和式(4),可得复合材料在真应力为0.5时的本构方程,如式(11)所示。
$$ \left\{ \begin{aligned} & {\dot \varepsilon = 4.95 \times {{10}^{10}}{{\left[ {\sinh \left( {0.0152\sigma } \right)} \right]}^{6.60}}\exp \left( { - \frac{{157.273}}{{RT}}} \right)} \\ & {Z = 4.95 \times {{10}^{10}}{{\left[ {\sinh \left( {0.0152\sigma } \right)} \right]}^{6.60}}{\text{ }}} \end{aligned} \right. $$ (11) 复合材料热变形时应力的计算值与实验值如图7所示。由图可知,计算值与实验值比较接近,证明本构方程能较好地描述本复合材料的热变形力学行为。如图所示,不同应变条件下的变形激活能变化不大,复合材料变形激活能通常与变形抗力的变化相关,说明变形量增加时,变形抗力变化不大。
2.3 二维加工图
动态材料模型将复合材料的热加工过程看作一个消耗能量过程。如式(12)所示,输入功率(p)的耗散来源于两个方面:由材料塑性变形引起的耗散量(G)和由组织变化引起的功率耗散(J),其动态本构方程如式(13)所示。由式(12)和式(13)可得到式(14)和式(15)。
$$ p = \sigma \dot \varepsilon = G + J = \int_0^{\dot \varepsilon } \sigma {\text{d}}\dot \varepsilon + \int_0^\sigma {\dot \varepsilon } {\text{d}}\sigma $$ (12) $$ \sigma = K\dot \varepsilon $$ (13) $$ J = p - G = \sigma \dot \varepsilon - \int_0^{\dot \varepsilon } \sigma {\text{d}}\dot \varepsilon $$ (14) $$ J = \sigma \dot \varepsilon - \int_0^{\dot \varepsilon } {K{{\dot \varepsilon }^m}} {\text{d}}\dot \varepsilon = \frac{m}{{m + 1}}\sigma \dot \varepsilon $$ (15) 式中:m为材料的应变速率敏感指数。材料处于理想耗散状态时,m=1,J达到最大值,如式(16)所示。此时引入功率耗散效率系数(η),如式(17)所示,可以看出功率耗散效率系数与应变速率敏感指数直接相关。
$$ {J_{\max }} = J\left( {m = 1} \right) = \sigma \dot \varepsilon /2 $$ (16) $$ \eta = \frac{J}{{{J_{\max }}}} = \frac{{2m}}{{m + 1}} $$ (17) 在应变速率和温度所构成的二维平面上绘出等功率耗散效率系数曲线即为功率耗散图。按照动态材料模型原理及Prasad失稳判断准则,耗散函数同应变速率满足式(18),将式(17)代入可最终化简得到式(19)。
$$ \frac{{{\text{d}}J}}{{{\text{d}}\dot \varepsilon }} < \frac{J}{{\dot \varepsilon }} $$ (18) $$ \frac{{\partial \ln \left( {\dfrac{m}{{m + 1}}} \right)}}{{\partial \ln \dot \varepsilon }} + m < 0 $$ (19) 此处定义材料的流变失稳条件(ξ(
$ \dot \varepsilon $ ))如式(20)所示,可以看到失稳条件与应变速率敏感指数有关。$$ \xi \left( {\dot \varepsilon } \right) = \frac{{\partial \ln \left( {\dfrac{m}{{m + 1}}} \right)}}{{\partial \ln \dot \varepsilon }} + m < 0 $$ (20) 真应变为0.1,0.3和0.5时的功率耗散图、失稳图及二维加工图分别如图8、图9、图10所示。从图8(a)可知,应变为0.1时,功率耗散效率系数值在365~420 ℃区域最大,约为0.21;从图9(a)可知,应变为0.3时,功率耗散效率系数值在377~420 ℃区域最大,约为0.22;从图10(a)可知,应变为0.5时,功率耗散效率系数值在379~420 ℃区域最大,约为0.27。在功率耗散效率系数值最大区域很大可能发生了组织转变。从图8(b)可知,应变为0.1时,失稳区域主要为温度350~430 ℃,应变速率为0.03~9.97 s−1;从图9(b)可知,应变为0.3时,失稳区域主要为温度350~432 ℃,应变速率为0.04~9.97 s−1;从图10(b)可知,应变为0.5时,失稳区域主要为温度350~439 ℃,应变速率为0.03~9.97 s−1。从图8(c)可知,温度433~490 ℃、应变速率0.03~9.97 s−1是该应变下最理想的加工区域;从图9(c)可知,温度436~490 ℃、应变速率0.04~9.97 s−1是该应变下最理想的加工区域;从图10(c)可知,温度440~492 ℃、应变速率0.04~9.97 s−1是该应变下最理想的加工区域。由此可知,在同一应变速率下,随温度的升高,功率耗散效率系数先增大后减小再增大。在350~430 ℃,功率耗散效率系数随应变速率的增大先增大后减小;在430~500 ℃,功率耗散效率系数随应变速率的增大而增大。
由图8(a)、图9(a)和图10(a)可以看出,功率耗散效率系数随应变的增加而增大。由图8(b)、图9(b)、图10(b)可以看出应变对失稳区域影响不大。由图8(c)、图9(c)、图10(c)可以看出应变对理想加工区域影响不大。
3. 结论
(1)40%SiCp/Al复合材料应变速率和变形温度对流变应力有明显的影响,应变速率越大,变形温度越低,复合材料越难于达到稳态变形。
(2)40%SiCp/Al复合材料应变速率增大,流变应力升高;变形温度升高,流变应力降低。热压缩变形时的流变行为可采用Zener-Hollomon参数的双曲正弦形式来描述。
(3)应变(真应变从0.1到0.5)对变形激活能影响不大,变形量增加,受到的变形抗力基本不变。
(4)在变形过程中,SiCp/Al复合材料容易发生破坏的区域主要分布在中低温范围。应变量变化对失稳区域影响不大。复合材料能够稳定变形的区域在中高温、低应变速率区,建议最佳加工区域温度为436~491 ℃,应变速率为0.04~9.97 s−1。
-
表 1 钛粉制备工艺
Table 1 Preparation technology of the titanium powders
制粉方法 原料 粉末形貌 工艺及粉末特点 氢化脱氢法 电解钛或海绵钛 不规则形状 成本低,工艺简单,粉末粒度范围宽,O、N含量高 还原法 四氯化钛或二氧化钛 海绵形 O、N等杂质含量低,纯度高,流动性好,需要后续分离过程 雾化法 钛丝 球形 杂质含量低,球形度好,粒度大小均匀,粒度较粗 射频等离子体球化法 氢化钛颗粒 球形 纯度高,表面形貌好,内部空隙少,流动性好,生产技术较难 -
[1] Bolzoni L, Esteban P G, Ruiz-Navas E M, et al. Influence of powder characteristics on sintering behaviour and properties of PM Ti alloys produced from prealloyed powder and master alloy. Powder Metall, 2011, 54(4): 543 DOI: 10.1179/003258910X12827272082623
[2] 王海英, 郭志猛, 芦博欣, 等. 钛合金粉末冶金工业化生产技术. 钛工业进展, 2017, 34(1): 1 Wang H Y, Guo Z M, Lu B X, et al. Industrialized production technology of powder metallurgy (PM) titanium and titanium alloy. Prog Titanium Ind, 2017, 34(1): 1
[3] 郭鲤, 何伟霞, 周鹏, 等. 我国钛及钛合金产品的研究现状及发展前景. 热加工工艺, 2020, 49(22): 22 Guo L, He W X, Zhou P, et al. Research status and development prospect of titanium and titanium alloy products in China. Hot Working Technol, 2020, 49(22): 22
[4] 吴引江, 梁永仁. 钛粉末及其粉末冶金制品的发展现状. 中国材料进展, 2011, 30(6): 44 Wu Y J, Liang Y R. Progress in titanium powder and titanium powder metallurgy products. Prog Mater Sci Eng, 2011, 30(6): 44
[5] 谭兆强, 张青, 郭学益, 等. 粉末冶金技术在汽车工业的新进展(英文). 中南大学学报(英文版), 2020, 27(6): 1611 DOI: 10.1007/s11771-020-4394-y Tan Z Q, Zhang Q, Guo X Y, et al. New development of powder metallurgy in automotive industry. J Cent South Univ, 2020, 27(6): 1611 DOI: 10.1007/s11771-020-4394-y
[6] 张策. 基于HDH钛粉反应合成制备低间隙原子钛合金技术研究[学位论文]. 北京: 北京科技大学, 2019 Zhang C. Study on Preparation of Low Gap Atomic Titanium Alloy Based on Reaction Synthesis of HDH Titanium Powder [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
[7] 杨廷志. 现代粉末冶金材料与技术进展. 中国金属通报, 2019(12): 10 Yang T Z. Progress of modern powder metallurgy materials and technology. China Met Bull, 2019(12): 10
[8] 王海英, 杨芳, 郭志猛, 等. 锻造粉末冶金Ti6Al4V合金的性能和组织研究. 稀有金属材料与工程, 2020, 49(8): 2855 Wang H Y, Yang F, Guo Z M, et al. Properties and microstructure of forged powder metallurgy Ti6Al4V alloy. Rare Met Mater Eng, 2020, 49(8): 2855
[9] 韩凤麟. 粉末锻造汽车发动机连杆新进展. 现代零部件, 2008(7): 71 Han F L. New development in powder forging of automobile engine connecting rod. Mod Compon, 2008(7): 71
[10] 吴松, 王峰, 马少波, 等. 粉末热锻模具磨损特性的实验研究与机理分析. 合肥工业大学学报(自然科学版), 2016, 39(2): 156 Wu S, Wang F, Ma S B, et al. Experimental study of wear characteristics of powder forging die and mechanism analysis. J Hefei Univ Technol Nat Sci, 2016, 39(2): 156
[11] 李霞. 粉末冶金制备生物医用钛合金[学位论文]. 哈尔滨: 哈尔滨工业大学, 2019 Li X. Preparation of Biomedical Titanium Alloy by Powder Metallurgy [Dissertation]. Harbin: Harbin Institute of Technology, 2019
[12] 施阳和, 郑华. 球形粉体的制备方法及应用. 中国粉体技术, 2015, 21(4): 71 Shi Y H, Zheng H. Preparing methods and application of spherical particles. China Powder Sci Technol, 2015, 21(4): 71
[13] 杨鑫, 奚正平, 刘咏, 等. 等离子旋转电极法制备钛铝粉末性能表征. 稀有金属材料与工程, 2010, 39(12): 2251 Yang X, Xi Z P, Liu Y, et al. Characterization of TiAl powders prepared by plasma rotating electrode processing. Rare Met Mater Eng, 2010, 39(12): 2251
[14] 张庆磊, 郝振华, 李静, 等. 感应等离子体球化法制备球形金属粉体的研究进展. 稀有金属材料与工程, 2020, 49(8): 2895 Zhang Q L, Hao Z H, Li J, et al. Research progress on preparation of spherical metal powders by induction plasma spheroidization. Rare Met Mater Eng, 2020, 49(8): 2895
[15] 曾光, 白保良, 张鹏, 等. 球形钛粉制备技术的研究进展. 钛工业进展, 2015, 32(1): 7 Zeng G, Bai B L, Zhang P, et al. Research progress on producing spherical titanium powder. Prog Titanium Ind, 2015, 32(1): 7
[16] 李欣, 龚燚, 刘时兵, 等. 钛合金粉末热等静压技术的发展现状及展望. 铸造, 2020, 69(4): 335 Li X, Gong Y, Liu S B, et al. Current development and prospects for titanium alloy powder metallurgy hot isostatic pressing technology. Foundry, 2020, 69(4): 335
[17] 郭志猛, 张策, 王海英, 等. 基于氢化脱氢钛粉制备低成本高性能钛合金. 钛工业进展, 2019, 36(5): 41 Guo Z M, Zhang C, Wang H Y, et al. Preparation of low-cost and high-performance titanium alloys based on HDH titanium powder. Prog Titanium Ind, 2019, 36(5): 41
[18] Fang Z Z, Paramore J D, Sun P, et al. Powder metallurgy of titanium—past, present, and future. Int Mater Rev, 2018, 63(7): 407 DOI: 10.1080/09506608.2017.1366003
[19] 陈刚, 路新, 章林, 等. 钛及钛合金粉末制备与近净成形研究进展. 材料科学与工艺, 2020, 28(3): 98 DOI: 10.11951/j.issn.1005-0299.20200041 Chen G, Lu X, Zhang L, et al. Research progress in powder production and near-net-shape manufacturing of titanium and its alloys. Mater Sci Technol, 2020, 28(3): 98 DOI: 10.11951/j.issn.1005-0299.20200041
[20] 洪艳, 曲涛, 沈化森, 等. 氢化脱氢法制备钛粉工艺研究. 稀有金属, 2007, 31(3): 311 Hong Y, Qu T, Shen H S, et al. Titanium production through hydrogenation and dehydrogenation process. Rare Met, 2007, 31(3): 311
[21] 翁启刚, 邱子力, 袁铁锤, 等. 电解钛氢化脱氢制备超细高纯钛粉工艺. 粉末冶金材料科学与工程, 2015, 20(2): 325 Weng Q G, Qiu Z L, Yuan T C, et al. Preparation process of ultrafine high purity Ti powders fabricated by electrolysis titanium using hydrogenation-dehydrogenation method. Mater Sci Eng Powder Metall, 2015, 20(2): 325
[22] 宋建勋, 徐宝强, 杨斌, 等. 镁热还原法制取金属钛的实验研究. 轻金属, 2009(12): 43 Song J X, Xu B Q, Yang B, et al. Research of producing titanium by magnesiothermic reduction process. Light Met, 2009(12): 43
[23] 范世钢, 豆志河, 张廷安, 等. 多级深度还原法直接制备钛粉. 稀有金属材料与工程, 2020, 49(3): 1020 Fan S G, Dou Z H, Zhang T A, et al. Direct preparation of titanium powder by multistage deep reduction. Rare Met Mater Eng, 2020, 49(3): 1020
[24] 万贺利, 徐宝强, 戴永年, 等. 钙热还原法制备钛粉过程的研究. 功能材料, 2012, 43(6): 700 Wan H L, Xu B Q, Dai Y N, et al. Research progress on preparation of titanium powders by calciothermic reduction. J Funct Mater, 2012, 43(6): 700
[25] 郭志猛, 芦博昕, 杨芳, 等. 粉末冶金钛合金制备技术研究进展. 粉末冶金工业, 2020, 30(2): 1 Guo Z M, Lu B X, Yang F, et al. Advances in preparation of titanium alloy from powder metallurgy. Powder Metall Ind, 2020, 30(2): 1
[26] 陆亮亮, 张少明, 徐骏, 等. 球形钛粉先进制备技术研究进展. 稀有金属, 2017, 41(1): 94 Lu L L, Zhang S M, Xu J, et al. Review on advanced preparation technology of spherical titanium powders. Rare Met, 2017, 41(1): 94
[27] 郑明月. 气雾化法制备增材制造用钛合金粉末研究[学位论文]. 北京: 北京科技大学, 2019 Zheng M Y. Gas Atomization Technology Research of Titanium Alloy Powders for Additive Manufacturing [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
[28] 李保强, 金化成, 张延昌, 等. 3D打印用球形钛粉制备技术研究进展. 过程工程学报, 2017, 17(5): 911 Li B Q, Jin H C, Zhang Y C, et al. Research progress of preparation methods of spherical titanium powders for 3D printing. J Process Eng, 2017, 17(5): 911
[29] 刘畅. 钛合金粉体等离子雾化制备设备及工艺研究[学位论文]. 沈阳: 沈阳工业大学, 2019 Liu C. Research on Plasma Atomization Preparation Equipment and Technology of Titanium Alloy Powder [Dissertation]. Shenyang: Shenyang University of Technology, 2019
[30] 路超, 肖梦智, 屈岳波, 等. 射频等离子球化制备球形钴铬合金粉末工艺研究. 粉末冶金工业, 2020, 30(6): 8 Lu C, Xiao M Z, Qu Y B, et al. Research of parameters on the effect of CoCr alloys pherical powders produced by RF plasma. Powder Metall Ind, 2020, 30(6): 8
[31] 胡凯, 邹黎明, 毛新华, 等. 射频等离子体制备球形钛粉及其在粉末注射成形中的应用. 钢铁钒钛, 2020, 41(1): 36 Hu K, Zou L M, Mao X H, et al. Preparation of spherical titanium powder by RF plasma and its application in powder injection molding. Iron Steel Vanadium Titanium, 2020, 41(1): 36
[32] 古忠涛, 叶高英, 金玉萍. 射频感应等离子体制备球形钛粉的成分分析. 强激光与粒子束, 2012, 24(6): 1409 DOI: 10.3788/HPLPB20122406.1409 Gu Z T, Ye G Y, Jin Y P. Chemical compositions of spherical titanium powders prepared by RF induction plasma. High Power Laser Part Beams, 2012, 24(6): 1409 DOI: 10.3788/HPLPB20122406.1409
[33] 盛艳伟, 郭志猛, 郝俊杰, 等. 射频等离子体制备球形钛粉. 稀有金属材料与工程, 2013, 42(6): 1291 Sheng Y W, Guo Z M, Hao J J, et al. Preparation of micro-spherical titanium powder by RF plasma. Rare Met Mater Eng, 2013, 42(6): 1291
[34] 陈学文. 钛合金粉末冶金制备工艺及力学性能研究. 冶金与材料, 2020, 40(3): 1 DOI: 10.3969/j.issn.1674-5183.2020.03.002 Chen X W. Study on preparation process and mechanical properties of titanium alloy powder metallurgy. Metall Mater, 2020, 40(3): 1 DOI: 10.3969/j.issn.1674-5183.2020.03.002
[35] 陈峰, 闫志巧, 许荣君, 等. 摩托车发动机用Ti−Al−Fe−Mo气门的制备及性能表征. 稀有金属材料与工程, 2019, 48(10): 3297 Chen F, Yan Z Q, Xu R J, et Al. Preparation and property characterization of Ti−Al−Fe−Mo valves for motorcycle engines. Rare Met Mater Eng, 2019, 48(10): 3297
[36] 刘文彬, 梁超, 陈伟, 等. 航空航天用粉末钛合金的热等静压工艺研究. 材料研究与应用, 2019, 13(3): 229 Liu W B, Liang C, Chen W, et al. Determination of fluoride in praseodymium-neodymium alloy by ion selective electrode. Mater Res Appl, 2019, 13(3): 229
[37] 张艳. 一种用于3D打印的钛合金粉末制备技术研究. 世界有色金属, 2017(9): 50 Zhang Y. A titanium alloy powder preparation used for 3d printing technology research. World Nonferrous Met, 2017(9): 50
[38] 周万琳, 李美华. 选择性激光烧结3D打印钛合金种植体的制备. 哈尔滨医科大学学报, 2019, 53(6): 593 Zhou W L, Li M H. Preparation of selective laser sintering 3D printed titanium alloy implants. J Harbin Med Univ, 2019, 53(6): 593
[39] 郭鲤, 詹浩, 游玉萍, 等. 钛及钛合金粉末注射成形的研究进展. 机械工程材料, 2018, 42(6): 15 Guo L, Zhan H, You Y P, et al. Research progress on powder injection molding of titanium and titanium alloy. Mater Mech Eng, 2018, 42(6): 15
[40] 向泽阳, 许荣君, 刘彬, 等. 粉末冶金Ti−3Al−5Mo−4.5V(TC16)合金的制备与力学性能. 粉末冶金材料科学与工程, 2018, 23(5): 534 Xiang Z Y, Xu R J, Liu B, et al. Preparation and mechanical property of powder metallurgy Ti−3Al−5Mo−4.5V (TC16) alloy. Mater Sci Eng Powder Metall, 2018, 23(5): 534
[41] Zhang H R, Niu H Z, Zang M C, et al. Microstructures and mechanical behavior of a near α titanium alloy prepared by TiH2-based powder metallurgy. Mater Sci Eng A, 2020, 770: 138570 DOI: 10.1016/j.msea.2019.138570
[42] Li S, Yang Y, Misra R, et al. Interfacial/intragranular reinforcement of titanium-matrix composites produced by a novel process involving core-shell structured powder. Carbon, 2020, 164: 378 DOI: 10.1016/j.carbon.2020.04.010
[43] Froes F H, Senkov O N, Qazi J I. Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing. Int Mater Rev, 2004, 49(3-4): 227 DOI: 10.1179/095066004225010550
[44] Alexander M, 田金华, 张莎莎, 等. 氢化钛粉制备钛及Ti−6Al−4V钛合金粉末冶金工艺与性能研究. 南京航空航天大学学报, 2018, 50(1): 100 Alexander M, Tian J H, Zhang S S, et al. Powder metallurgy technology and properties of Ti and Ti−6Al−4V alloy prepared using titanium hydride powder. J Nanjing Univ Aeronaut Astronaut, 2018, 50(1): 100
[45] American Society of Mechanical Engineers. ASTM B381-00 Specification for Titanium and Titanium Alloy Forgings. West Conshohocken: ASTM International, 2003
[46] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB25137-2010钛及钛合金锻件. 北京: 中国标准出版社, 2010 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. GB25137-2010 Titanium and Titanium Alloy Forgings. Beijing: Standards Press of China, 2010
[47] 于永川. 快速凝固TiAl/Ti基合金的组织及性能研究[学位论文]. 宁夏: 宁夏大学, 2019 Yu Y C. Research on Microstructure and Properties of Rapidly Solidified TiAl/Ti Based Alloy [Dissertation]. Ningxia: Ningxia University, 2019
[48] 张振亚, 于化顺, 王少卿, 等. 快速凝固/粉末冶金法制备ZK60高强镁合金. 材料工程, 2010(5): 72 Zhang Z Y, Yu H S, Wang S Q, et al. High strength ZK60 magnesium alloy produced by rapid solidification/powder metallurgy process. J Mater Eng, 2010(5): 72
[49] 娄军. 快速凝固钛合金的组织与性能研究[学位论文]. 沈阳: 沈阳大学, 2012 Lou J. Study of Tensile Properties and Columnar Crystal Structure of Rapidly Solidified Titanium Alloy [Dissertation]. Shenyang: Shenyang University, 2012
[50] Li S, Kim Y, Nam T. Microstructure and superelastic behavior of rapidly solidified Ti−18Zr−12.5Nb−2Sn (at.%) alloy fibers. J Biomater Tissue Eng, 2018, 8(8): 1216
[51] Li S, Kim Y, Choi M, et al. Microstructure, mechanical and superelastic behaviors in Ni-free Ti−Zr−Nb−Sn shape memory alloy fibers prepared by rapid solidification processing. Mater Sci Eng A, 2020, 782: 139283 DOI: 10.1016/j.msea.2020.139283
-
期刊类型引用(0)
其他类型引用(1)