高级检索

3D打印生物陶瓷人工骨支架的研究进展

梁浩文, 王月, 陈小腾, 刘正白, 白家鸣

梁浩文, 王月, 陈小腾, 刘正白, 白家鸣. 3D打印生物陶瓷人工骨支架的研究进展[J]. 粉末冶金技术, 2022, 40(2): 100-109. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030040
引用本文: 梁浩文, 王月, 陈小腾, 刘正白, 白家鸣. 3D打印生物陶瓷人工骨支架的研究进展[J]. 粉末冶金技术, 2022, 40(2): 100-109. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030040
LIANG Hao-wen, WANG Yue, CHEN Xiao-teng, LIU Zheng-bai, BAI Jia-ming. Progress of 3D printing bioceramic on artificial bone scaffolds[J]. Powder Metallurgy Technology, 2022, 40(2): 100-109. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030040
Citation: LIANG Hao-wen, WANG Yue, CHEN Xiao-teng, LIU Zheng-bai, BAI Jia-ming. Progress of 3D printing bioceramic on artificial bone scaffolds[J]. Powder Metallurgy Technology, 2022, 40(2): 100-109. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030040

3D打印生物陶瓷人工骨支架的研究进展

基金项目: 深圳市国际合作项目(GJHZ20200731095606021);深圳市自然科学基金面上项目(20200925155544005);深圳市孔雀团队项目(KQTD20190929172505711,KQTD2017032815444316)
详细信息
    通讯作者:

    白家鸣: E-mail: baijm@sustech.edu.cn

  • 中图分类号: TQ174.5

Progress of 3D printing bioceramic on artificial bone scaffolds

More Information
  • 摘要: 生物陶瓷骨支架是继金属骨支架之后,较为理想的人工骨缺损修复材料。由于骨缺损形状各异,增材制造技术与生物陶瓷的结合,为骨支架的制备提供了个性化、定制化、成型复杂型体的可能。目前,陶瓷人工骨的增材制造技术展现出了巨大应用前景,但仍面临着力学强度不高、生物性功能单一的问题。为此,本文从提高骨支架的力学性能、拓展其生物性功能的角度出发,归纳分析了浆料/粉体体系、脱脂烧结工艺、材料复合、结构设计对支架力学性能的影响,从药物释放、治疗肿瘤两个方面总结了多生物功能支架的研究进展,并介绍了增材制造陶瓷骨支架在生物体内的研究现状。最后,对增材制造生物陶瓷人工骨的发展进行了展望。
    Abstract: Bioceramics are the ideal artificial materials of the bone scaffolds to repair the bone defects next to the traditional metal materials. The combination of additive manufacturing and bioceramics provides the enormous possibilities to achieve the customized and personalized scaffolds with more complex structures for the personalized therapy. Nowadays, the bioceramics scaffolds prepared by the additive manufacturing show the great prospects, but meet the problems of poor mechanical strength and single biofunction. To improve the mechanical properties and expand the biological functions of the bioceramics scaffolds, the influence of the slurry/powder system, debinding and sintering process, composite materials, and structure design on the mechanical properties of the bioceramics scaffolds was concluded and analyzed in this paper. The progress of the multifunctional bioceramics scaffolds was summarized from two aspects of drug release and cancer treatment. The research status of bioceramics scaffolds by additive manufacturing in vivo was also introduced. Finally, the development of bioceramics scaffolds by additive manufacturing was prospected
  • Ti(C,N)基金属陶瓷诞生于20世纪70年代,是在WC–Co基硬质合金和TiC基金属陶瓷的基础上发展起来的一种复合材料,它以Ti(C,N)为硬质相、适量金属为粘结相制备而成,性能介于陶瓷和硬质合金之间。由于Ti(C,N)基金属陶瓷有接近陶瓷的硬度和耐高温性,加工时与钢的摩擦系数小,耐磨性比普通硬质合金好,而抗冲击性能比陶瓷高,因此Ti(C,N)基金属陶瓷被广泛用于高速切削加工,尤其是精加工领域,其切削速度比WC基硬质合金提高20%~50%[13]。同时,Ti(C,N)基金属陶瓷具备优良的热稳定性和高温力学性能,且地壳中钛的储量丰富,使得Ti(C,N)基金属陶瓷成为WC基硬质合金的最具竞争力的替代品之一[4]。然而,与WC–Co硬质合金相比,Ti(C,N)基金属陶瓷仍存在强度和断裂韧性偏低等问题。目前,添加各类添加剂是提升Ti(C,N)基金属陶瓷力学性能最有效的手段之一。根据现有研究,Ti(C,N)基金属陶瓷的添加剂种类很多,Mo2C和WC可改善粘接相对硬质相的润湿性[5];TaC可提高材料的红硬性和抗热冲击性[6];Cr2C3的主要作用是抑制晶粒长大,可提高金属陶瓷的硬度和耐磨性[7];稀土元素也能够改善Ti(C,N)基金属陶瓷的组织与性能。刘宁等[8]发现Y在Ti(C,N)基金属陶瓷中可净化粘接相/硬质相界面,并使其环形相的厚度略有增加,从而使硬质相颗粒得到细化。Wu等[9]、董洪峰等[10]、姜佳庚等[11]发现,在Ti(C,N)基金属陶瓷中引入La元素能够促进硬质相的溶解–析出,降低试样中的氧含量,改善粘结相对硬质相的润湿性,提高材料的抗弯强度和硬度。为提高Ti(C,N)基金属陶瓷综合性能,在制备Ti(C,N)基金属陶瓷过程中往往将多种不同功能的第二类碳化物添加剂混合添加。但是,由于添加剂含量低且难分散均匀,多功能组元的协同效应很难显现;同时,添加的添加剂种类较多,体系氧和游离碳等难以精准调控。如能将多种功能组元固溶形成碳氮化物固溶体引入Ti(C,N)基金属陶瓷中,则有望克服上述问题。为此,本文制备了低氧低游离碳的(Cr,La)2(C,N)碳氮化物复合固溶体,并将其引入至Ti(C,N)基金属陶瓷体系,研究(Cr,La)2(C,N)对金属陶瓷微观组织及力学性能的影响,以期提升Ti(C,N)基金属陶瓷的综合性能。

    按理论原料质量配比,将粉末粒径分别为500 nm的Cr2O3、1 μm的La2O3、100 nm的炭黑混合粉末置于WD63滚筒式球磨机,加入一定量无水乙醇湿磨24 h,球磨结束后将粉末烘干,再将混合粉末放入ZMT-45-25型高温石墨碳管炉中,在1400 ℃的流动氮气气氛保温4 h,制备(Cr,La)2(C,N)粉末。

    表1为制备Ti(C,N)基金属陶瓷的所用原料粉末的基本参数。将所有原料按比例混合均匀,其中Ti(C,N)为44~54 g,(Cr,La)2(C,N)为0~10 g,WC为20 g,Mo2C为8 g,TaC为2 g,其余为金属粘接相Co和Ni。在聚氨酯球磨罐中加入一定量无水乙醇和质量分数2%的成形剂,湿磨24 h,球料比8:1,球磨结束后放入真空烘箱烘干备用。将烘干后的粉末在120 MPa压力下双向压制成形,压坯尺寸为7 mm×7 mm×37 mm。采用脱胶–烧结进行烧结,液相烧结压力为2 MPa,烧结温度为1470 ℃。烧结后的合金样条经磨床磨制抛光后用于力学性能及显微组织的测试。为了研究不同质量分数(Cr,La)2(C,N)对金属陶瓷微观组织及力学性能的影响,制备了添加质量分数分别为0、2.5%、5.0%、7.5%、10.0%(Cr,La)2(C,N)的5种Ti(C,N)基金属陶瓷试样。

    表  1  各原料粉末的基本参数
    Table  1.  Basic parameters of raw material powder
    原料粉末粒度 / μm质量分数 / %
    CNO
    Ti(C,N)1.311.919.710.34
    (Cr,La)2(C,N)8.05.964.410.44
    WC1.06.220.47
    Mo2C1.05.800.50
    TaC1.06.200.20
    Co1.20.47
    Ni1.20.15
    下载: 导出CSV 
    | 显示表格

    采用DX-2000 X射线衍射仪(X-ray diffraction,XRD)分析Ti(C,N)基金属陶瓷物相组成。利用JSM-6490LV扫描电子显微镜(scanning electron microscope,SEM)在背散射电子(back scattered electron,BSE)模式下对金属陶瓷微观结构进行观察。使用Leco CS 744碳硫分析仪和Leco ON 736氮氧分析仪测定元素含量(质量分数)。通过WDW-50E型号的万能试验机测试金属陶瓷的抗弯强度,维氏硬度测量时的加载载荷为30 kg,断裂韧性的测量采用压痕法,在100倍金相显微镜下测量压痕裂纹的长度,采用式(1)计算断裂韧性[12]

    $$ {K_{{\text{IC}}}} = 0.15\sqrt {\frac{{{\text{H}}{{\text{V}}_{30}}}}{{\displaystyle\sum L }}} $$ (1)

    式中:KIC为断裂韧性,HV30为维氏硬度,L为裂纹长度。

    图1为制备的(Cr,La)2(C,N)粉末X射线衍射图谱,其中La的固溶量为1%(质量分数)。由图1可知,产物为含铬的碳氮化物,未见其他杂相。对比Cr2(C0.39,N0.61)的PDF标准卡片发现,该相在(002)、(121)、(202)的衍射峰均向左偏移,在这些晶面处的晶格常数增大意味着La原子已固溶至Cr2(C,N)的晶格中,形成了(Cr,La)2(C,N)固溶体。图2为(Cr,La)2(C,N)粉末破碎后的扫描电子显微形貌,从图中可以看出,粉末平均粒径为8 μm,有部分由5~10 μm的微粒相互桥接组成的约15 μm聚集体。经碳硫、氮氧分析仪对(Cr,La)2(C,N)进行元素测定,结果表明,总碳质量分数为5.96%,游离碳质量分数为0.14%,氧质量分数为0.44%,氮质量分数为4.41%。综合以上分析,所制备的(Cr,La)2(C,N)粉末粒度均匀性良好且La元素已充分固溶。

    图  1  (Cr,La)2(C,N)粉末的X射线衍射图谱
    Figure  1.  XRD patterns of the (Cr,La)2(C,N) powders
    图  2  (Cr,La)2(C,N)粉末扫描电子显微形貌
    Figure  2.  SEM image of the (Cr,La)2(C,N) powders

    图3为添加质量分数10.0%(Cr,La)2(C,N)的Ti(C,N)基金属陶瓷扫描电子显微形貌以及对应的Cr、La、Co、Ni能谱(energy disperse spectroscope,EDS)分析。由图3可以看出,Cr和La主要固溶于粘接相金属中,另外也在环形相中发现少量Cr和La的固溶。图4为添加不同质量分数(Cr,La)2(C,N)的Ti(C,N)基金属陶瓷X射线衍射图谱。从图4中能够发现,添加(Cr,La)2(C,N)后Ti(C,N)基金属陶瓷仍然由(Ti,M)(C,N)和Co/Ni粘接相组成,X射线衍射图谱中未检测到其他物相,说明(Cr,La)2(C,N)已完全固溶。另外,观察到Co/Ni粘接相在(111)处的衍射峰向低角度偏移,并且偏移程度随着(Cr,La)2(C,N)添加量的增多而增大。这是由于在溶解析出过程中Cr、La原子逐渐溶入粘接相晶格导致晶格发生畸变,而Cr、La原子半径均大于Co、Ni原子,根据布拉格方程可知,衍射峰会向低角度偏移。

    图  3  添加质量分数为10.0%(Cr,La)2(C,N)的金属陶瓷的扫描电子显微形貌和能谱分析
    Figure  3.  SEM image and EDS analysis of the cermets with 10.0% (Cr,La)2(C,N) (mass fraction)
    图  4  添加不同质量分数(Cr,La)2(C,N)的Ti(C,N)基金属陶瓷X射线衍射图谱
    Figure  4.  XRD patterns of the Ti(C,N)-based cermets with the different mass fraction of (Cr,La)2(C,N)

    图5为添加不同质量分数(Cr,La)2(C,N)的Ti(C,N)基金属陶瓷微观组织和粒度分布。一般而言,Ti(C,N)基金属陶瓷一般由黑芯相、环形相和粘接相组成,黑芯相为未溶的Ti(C,N)颗粒,环形相为(Ti,W,Mo,Ta,Cr)(C,N),包覆在黑芯相外,一般呈灰色,粘接相为亮白色的溶解微量合金元素的Co和Ni[1314]。从图5(a)~图5(d)中可以看出,当(Cr,La)2(C,N)的质量分数从0增加到7.5%时,Ti(C,N)基金属陶瓷的晶粒尺寸随(Cr,La)2(C,N)添加量的增大而逐渐变小,D50从1.18 μm下降至0.79 μm;当(Cr,La)2(C,N)的质量分数为10.0%时,D50已下降量不大,说明(Cr,La)2(C,N)细化晶粒的作用已不明显。随着(Cr,La)2(C,N)添加量的增加,“黑芯–灰环”结构逐渐减少,“白芯–灰环”以及无芯结构逐渐增多,黑芯相形态逐渐向球形变化,硬质相溶解析出更加彻底。另外,当(Cr,La)2(C,N)质量分数达到10.0%时,可以观察到部分晶粒的环形相增厚,Co/Ni金属逐渐呈聚集分布,这是由于硬质相质量分数相对减少,粘接相金属由于分布不均而形成“钴池”所致,这将严重影响Ti(C,N)基金属陶瓷的力学性能。可以得出,(Cr,La)2(C,N)能够起到显著细化晶粒的作用,并且促进硬质相溶解析出,但当(Cr,La)2(C,N)的添加量过大时,出现了粘接相以及芯–环结构分布不均匀的现象。

    图  5  添加不同质量分数(Cr,La)2(C,N)的金属陶瓷扫描电子显微形貌和晶粒尺寸分布:(a)0%;(b)2.5%;(c)5.0%;(d)7.5%;(e)10.0%
    Figure  5.  SEM images and grains size distribution of the cermets with different mass fraction of (Cr,La)2(C,N): (a) 0%; (b) 2.5%; (c) 5.0%; (d) 7.5%; (e) 10.0%

    表2为添加不同质量分数(Cr,La)2(C,N)的Ti(C,N)基金属陶瓷试样粘接相能谱分析,从表中可以看出,随着(Cr,La)2(C,N)添加量逐渐增多,粘接相中的Ti、W、Mo、Ta等元素含量逐渐增加,这说明La元素有利于Ti、W、Mo、Ta等原子向粘接相扩散,促进溶解–析出过程进行,但当(Cr,La)2(C,N)添加量过大时,则会使环形相明显增厚,如图5(e)所示。

    表  2  添加不同质量分数(Cr,La)2(C,N)的Ti(C,N)基金属陶瓷试样粘接相能谱分析(质量分数)
    Table  2.  EDS analysis of the bonding phase in Ti(C,N)-based cermets with different mass fraction of (Cr,La)2(C,N) %
    (Cr,La)2(C,N) Ti W Mo Cr Ta La Co Ni
    0 13.22 29.59 19.58 0 0.52 0.06 18.88 6.03
    2.5 13.98 30.59 20.63 3.41 0.64 0.11 16.64 4.99
    5.0 15.22 32.98 21.77 5.87 0.60 0.12 12.00 4.84
    7.5 12.84 33.90 21.23 9.99 0.68 0.18 11.55 4.47
    10.0 10.77 32.43 17.58 10.31 0.88 0.25 10.49 4.11
    下载: 导出CSV 
    | 显示表格

    图6图9为添加不同质量分数(Cr,La)2(C,N)的Ti(C,N)基金属陶瓷试样密度、抗弯强度、硬度及断裂韧性。由图6可知,当(Cr,La)2(C,N)质量分数低于5.0%时,Ti(C,N)基金属陶瓷的密度几乎保持不变,约为6.94 g·cm−3,而当(Cr,La)2(C,N)质量分数继续提高时,金属陶瓷的密度迅速降低,当(Cr,La)2(C,N)质量分数为10.0%时,密度为6.82 g·cm−3,这说明当有过量的(Cr,La)2(C,N)加入时,Ti(C,N)基金属陶瓷的孔隙增多,陶瓷表面孔洞可从图10观察看出。

    图  6  添加不同质量分数(Cr,La)2(C,N)的Ti(C,N)基金属陶瓷密度
    Figure  6.  Density of the Ti(C,N)-based cermets with different mass fraction of (Cr,La)2(C,N)

    图7可知,Ti(C,N)基金属陶瓷的抗弯强度随着(Cr,La)2(C,N)添加量的增加先增大后减小,当(Cr,La)2(C,N)质量分数达到5.0%时,抗弯强度达到最大,为2002 MPa,继续添加(Cr,La)2(C,N),抗弯强度迅速降低。金属陶瓷的抗弯强度增大是由于(Cr,La)2(C,N)的添加能有效细化Ti(C,N)基金属陶瓷晶粒,引起细晶强化,以及La元素促进Ti、W、Mo、Cr、Ta等元素的扩散,使粘接相中的合金元素逐渐增多,引起固溶强化[11]。当(Cr,La)2(C,N)的添加量过大时,试样内部的孔隙率会逐渐增大[15],且粘接相分布不均,形成“钴池”,这些因素导致抗弯强度迅速减小。

    图  7  添加不同质量分数(Cr,La)2(C,N)的Ti(C,N)基金属陶瓷抗弯强度
    Figure  7.  Bending strength of the Ti(C,N)-based cermets with different mass fraction of (Cr,La)2(C,N)

    图8可知,Ti(C,N)基金属陶瓷的维氏硬度随(Cr,La)2(C,N)添加量增加先增大后减小,当(Cr,La)2(C,N)的质量分数从0变化到5.0%,维氏硬度从1595 MPa提高至1643 MPa,这是由于添加(Cr,La)2(C,N)能使Ti(C,N)基金属陶瓷晶粒细化,而细化的晶粒可以提高金属陶瓷的硬度;另一方面,La元素能够促进Ti、W、Mo、Ta、Cr等元素向粘接相晶格扩散,由于固溶强化的作用,这也能提高Ti(C,N)基金属陶瓷的硬度。但当(Cr,La)2(C,N)的质量分数超过5.0%时,Ti(C,N)基金属陶瓷的硬度便迅速降低,这由于过量的(Cr,La)2(C,N)的加入使陶瓷的孔隙增多造成的。

    图  8  添加不同质量分数(Cr,La)2(C,N)的Ti(C,N)基金属陶瓷的维氏硬度
    Figure  8.  Hardness of Ti(C,N)-based cermets with different mass fraction of (Cr,La)2(C,N)

    图9可知,当(Cr,La)2(C,N)的质量分数小于2.5%时,Ti(C,N)基金属陶瓷的断裂韧性随着(Cr,La)2(C,N)质量分数的增加基本保持不变。(Cr,La)2(C,N)质量分数继续增大,金属陶瓷的断裂韧性迅速提高,当(Cr,La)2(C,N)质量分数达到7.5%时,断裂韧性达到最高,之后断裂韧性随(Cr,La)2(C,N)质量分数的增大而急剧降低。这是由于当(Cr,La)2(C,N)添加量不大时,其分布相对不均匀,细化晶粒的作用不明显,导致断裂韧性无明显变化,而当(Cr,La)2(C,N)质量分数大于2.5%时,断裂韧性均高于不添加(Cr,La)2(C,N)的金属陶瓷。图11为添加不同质量分数(Cr,La)2(C,N)的Ti(C,N)基金属陶瓷试样裂纹扩展形貌。三种方式可显著提高断裂韧性:一是细化晶粒可提高材料的断裂韧性;二是添加(Cr,La)2(C,N)后,裂纹偏转角度较大,当裂纹尖端需要较大偏转时,会分裂成两条新裂纹,绕开Ti(C,N)晶粒向不同方向扩展,从而消耗更多能量,分散裂纹尖端应力,如图11(b)所示;三是在Ti(C,N)基金属陶瓷中无芯晶粒会提高材料的断裂韧性[1314],这主要是因为典型的黑芯–灰环结构在界面处的结合力不强,易发生断裂,而无芯晶粒由于不存在芯–环结构,故其断裂韧性会明显改善。另外,试样中存在孔隙也会严重恶化金属陶瓷的断裂韧性。

    图  9  添加不同质量分数(Cr,La)2(C,N)的Ti(C,N)基金属陶瓷的断裂韧性
    Figure  9.  Fracture toughness of the Ti(C,N)-based cermets with different mass fraction of (Cr,La)2(C,N)
    图  10  Ti(C,N)基金属陶瓷表面存在的孔洞
    Figure  10.  Pores in the surface of the Ti(C,N)-based cermets
    图  11  添加不同质量分数(Cr,La)2(C,N)的Ti(C,N)基金属陶瓷裂纹扩展形貌:(a)0%;(b)5.0%;(c)7.5%;(d)10.0%
    Figure  11.  Crack growth morphologies of the Ti(C,N)-based cermets with different mass fraction of (Cr,La)2(C,N): (a) 0%; (b) 5.0%; (c) 7.5%; (d) 10.0%

    (1)以Cr2O3、La2O3、炭黑为原料,使用高温碳管炉,在1400 ℃保温4 h条件下制备了平均粉末粒径为8 μm、游离碳质量分数为0.14%、氮质量分数为4.41%、氧质量分数为0.44%的单相(Cr,La)2(C,N)固溶体粉末.

    (2)Ti(C,N)基金属陶瓷的抗弯强度、硬度和断裂韧性都随着添加(Cr,La)2(C,N)质量分数的增加先增大后减小。当(Cr,La)2(C,N)质量分数为5.0%时,金属陶瓷的抗弯强度和硬度达到最大值,分别为2002 MPa和1643 MPa;当(Cr,La)2(C,N)质量分数为7.5%时,金属陶瓷的断裂韧性达到最大值11.78 MPa·m1/2。当(Cr,La)2(C,N)的质量分数为5.0%时,Ti(C,N)基金属陶瓷的综合性能达到最佳,抗弯强度为2002 MPa,硬度为1643 MPa,断裂韧性为11.22 MPa·m1/2

  • 图  1   增材制造技术制备生物陶瓷材料原理[911]:(a)上拉式立体光固化工艺;(b)下沉式立体光固化工艺;(c)材料挤出工艺;(d)粘结剂喷射工艺

    Figure  1.   Working principles of the bioceramics additive manufacturing[911]: (a) bottom-up digital light processing; (b) top-down digital light processing; (c) materials extrusion; (d) binder jetting

    图  2   试样的弯曲强度、压缩强度随烧结温度的变化[13]

    Figure  2.   Effects of the sintering temperature on the flexural strength and compression strength[13]

    图  3   骨支架的压缩强度随保温时间的关系[34]

    Figure  3.   Effects of the holding time on the compression strength of scaffolds[34]

    图  4   各种晶格和三次周期最小表面结构[4345]:(a)钻石晶格结构;(b)Octet结构;(c)各向同性BBC结构;(d)P结构;(e)D结构;(f)G结构;(g)IWP结构

    Figure  4.   Lattice-based and TPMS structure[4345]: (a) lattice diamond; (b) octet; (c) body-centered cubic; (d) schwarz primitive; (e) diamond; (f) gyroid; (g) IWP

    图  5   释放不同药物的支架[53,5557]:(a)释放左氧氟沙星;(b)释放阿霉素;(c)释放盐酸四环素;(d)释放活性氧

    Figure  5.   Different drug−releasing scaffolds[53,5557]: (a) levofloxacin loaded; (b) doxorubicin loaded; (c) tetracycline hydrochloride loaded; (d) calcium peroxide loaded

    图  6   不同肿瘤治疗原理的支架[63,65, 6768]:(a)光热原理支架;(b)磁热原理支架;(c)磁热、光热双功能支架;(d)光热、活性氧双功能支架

    Figure  6.   Scaffolds with the different therapied effects[63,65,6768]: (a) photothermal effect; (b) magnetothermal effect; (c) photothermal and magnetothermal effect; (d) photothermal and reactive-oxygen-species effect

    表  1   两种不同三次周期最小表面结构的性能参数

    Table  1   Properties of two TPMS structures

    TPMS结构
    类型
    模型尺寸 /
    mm
    设计孔隙
    率 / %
    实际孔隙
    率 / %
    屈服强度 /
    MPa
    P结构50×50×5067.1867.233.310±0.310
    G结构50×50×5067.0866.492.000±0.021
    下载: 导出CSV

    表  2   不同结构生物陶瓷人工骨支架的性能参数

    Table  2   Properties of the different structure scaffolds

    文献结构类型或制备方法材料固含量烧结温度 / ℃孔隙率 / %压缩强度 / MPa
    Yao等[47]P结构HA40%(体积分数)130074.004.09
    Liu等[48]方孔结构TCP60%(质量分数)115040.009.89
    圆孔TCP60 %(质量分数)115044.004.11
    Liu等[49]IWP结构HA45%(质量分数)110049.8015.25
    Huang等[50]G结构TCP52%(体积分数)100066.008.61
    Feng等[13]立方体HA40%(体积分数)125054.521.45
    Macchetta等[51]冷冻浇铸法HA/TCP128072.502.30
    Tang等[52]冷冻浇铸法HA125055.007.50
    冷冻浇铸法HA125063.003.00
    下载: 导出CSV

    表  3   搭载药物骨支架的性能参数

    Table  3   Characteristics of the drug delivery scaffolds

    文献支架材料加载药物成分药物释放速度细菌种类
    Marques等[53]BCP0.06%左氧氟沙星(质量分数)第30 min释放了近60%,第24 h释放了近71%金黄色葡萄球菌
    Kamboj等[54]硅酸钙19.2 mg·ml‒1万古霉素第40 h为8 mg·mL‒1,第160 h为
    11 mg·mL‒1
    Touri等[55]BCP5%过氧化钙/聚己内酯(质量比)第1 d和第7 d释放氧浓度分别为
    155 mmHg和130 mmHg
    抑制大肠杆菌、金黄色葡萄球菌
    下载: 导出CSV

    表  4   治疗肿瘤骨支架的性能参数

    Table  4   Characteristics of scaffolds for the tumor therapy

    文献材料治疗原理治疗效果
    Ma等[6366]磷酸钙/聚多巴胺光热治疗体外试验,近88.2%骨肉瘤细胞凋亡,近80.4%乳腺癌细胞凋亡
    氧化石墨烯改性的磷酸三钙光热治疗体外试验,近92.6%的骨肉瘤细胞凋亡;体内试验,近83%的骨肉瘤瘤细胞凋亡
    铜-二氧化硅-TCP光热治疗体外试验,近86.56%的人成骨肉瘤细胞凋亡
    含铁硅酸钙光热治疗、活性氧治疗体外试验,近91.4%的骨肉瘤细胞凋亡
    Zhang等[67]TCP-铁-氧化石墨烯磁热治疗体外试验,近75%的人成骨肉瘤细胞凋亡
    Zhuang等[68]铁-钙钛矿磁热治疗、光热治疗体外试验,近98%的骨肉瘤细胞凋亡
    下载: 导出CSV

    表  5   对兔子进行骨缺损修复的支架参数

    Table  5   Characteristics of the scaffolds to repair defects in rabbit

    文献部位材料植入时长 / 周支架参数力学性能生物性能
    Shao等[73]颅骨TCP、含质量分数10%镁的硅酸钙(CSi-Mg10)、CSi-Mg10/含质量分数15%TCP(CSi-Mg10/TCP15)12孔隙率分别为
    60.1%、52.1%、57.8%;
    烧结温度为1150 ℃
    CSi-Mg10的压缩强度最高,CSi-Mg10/TCP15次之,分别为90.1 MPa、45 MPa;
    CSi-Mg10的弯曲强度最高, CSi-mg10/TCP15次之,分别为20 MPa、10 MPa
    CSi-Mg10/TCP15的血管再生体积比为35%,CSi-Mg10为22%
    Shao等[74]下颌骨TCP、CSi、CSi-Mg10、Bredigite16孔隙率分别为
    57.3%、56. %、51.2%、61.2%
    6周后,CSi、Bred骨支架质量损失最多,超过10%以上,CSi-Mg10次之,损失了6.8%;
    损失前后CSi-Mg10的弯曲强度、弯曲强度都为最高,分别为
    30 MPa、23 MPa
    CSi-Mg10的血管再生的体积比最大,达30.5%,新生骨体积占比约为30%
    Maliha等[75]颅骨TCP8双嘧达莫浓度分别为100、1000、10000 μmol·L‒1生长因子为1000 μmol·L‒1时,骨生长率最好,为27.9%
    下载: 导出CSV
  • [1]

    Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg, 2011, 93(23): 2227 DOI: 10.2106/JBJS.J.01513

    [2]

    Lin K, Sheikh R, Romanazzo S, et al. 3D printing of bioceramic scaffolds—barriers to the clinical translation: from promise to reality, and future perspectives. Materials, 2019, 12(17): 2660 DOI: 10.3390/ma12172660

    [3]

    Zafar M J, Zhu D B, Zhang Z Y. 3D printing of bioceramics for bone tissue engineering. Materials, 2019, 12(20): 3361 DOI: 10.3390/ma12203361

    [4]

    Hench L L. Bioceramics: from concept to clinic. J Am Ceram Soc, 1991, 74(7): 1487 DOI: 10.1111/j.1151-2916.1991.tb07132.x

    [5]

    Best S M, Porter A E, Thian E S, et al. Bioceramics: past, present and for the future. J Eur Ceram Soc, 2008, 28(7): 1319 DOI: 10.1016/j.jeurceramsoc.2007.12.001

    [6]

    Bose S, Ke D X, Sahasrabudhe H, et al. Additive manufacturing of biomaterials. Prog Mater Sci, 2018, 93: 45 DOI: 10.1016/j.pmatsci.2017.08.003

    [7]

    Li W L, Liu W W, Li M S, et al. Nanoscale plasticity behavior of additive-manufactured zirconia-toughened alumina ceramics during nanoindentation. Materials, 2020, 13(4): 1006 DOI: 10.3390/ma13041006

    [8]

    Markandan K, Chin J K, Tan M T T. Study on mechanical properties of zirconia‒alumina based ceramics // The 3rd International Conference on Process Engineering and Advanced Materials. Kuala Lumpur, 2014: 81

    [9] 中国国家标准化管理委员会. GB/T 35021—2018增材制造 工艺分类及原材料. 北京: 中国标准出版社, 2018

    Standardization Administration. GB/T 50011—2018 Additive Manufacturing Process Classification and Raw Materials. Beijing: Standards Press of China, 2018

    [10]

    Guo B B, Ji X Z, Wang W, et al. Highly flexible, thermally stable, and static dissipative nanocomposite with reduced functionalized graphene oxide processed through 3D printing. Composites Part B, 2021, 208: 108598 DOI: 10.1016/j.compositesb.2020.108598

    [11]

    Guo B B, Zhang J S, Ananth K P, et al. Stretchable, self-healing and biodegradable water-based heater produced by 3D printing. Composites Part A, 2020, 133: 105863 DOI: 10.1016/j.compositesa.2020.105863

    [12]

    Zhou T Y, Zhang L, Yao Q, et al. SLA 3D printing of high quality spine shaped β-TCP bioceramics for the hard tissue repair applications. Ceram Int, 2020, 46(6): 7609 DOI: 10.1016/j.ceramint.2019.11.261

    [13]

    Feng C W, Zhang K Q, He R J, et al. Additive manufacturing of hydroxyapatite bioceramic scaffolds: Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility. J Adv Ceram, 2020, 9: 360 DOI: 10.1007/s40145-020-0375-8

    [14]

    Xia X G, Duan G L. Effect of solid loading on properties of zirconia ceramic by direct ink writing. Mater Res Express, 2021, 8(1): 015403 DOI: 10.1088/2053-1591/abd866

    [15]

    Lee G, Carrillo M, Mckittrick J, et al. Fabrication of ceramic bone scaffolds by solvent jetting 3D printing and sintering: Towards load-bearing applications. Addit Manuf, 2020, 33: 101107

    [16]

    Sun J X, Binner J, Bai J. 3D printing of zirconia via digital light processing: optimization of slurry and debinding process. J Eur Ceram Soc, 2020, 40(15): 5837 DOI: 10.1016/j.jeurceramsoc.2020.05.079

    [17]

    Sun J X, Binner J, Bai J. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography. J Eur Ceram Soc, 2019, 39(4): 1660 DOI: 10.1016/j.jeurceramsoc.2018.10.024

    [18]

    Zhang K Q, Xie C, Wang G, et al. High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing. Ceram Int, 2019, 45(1): 203 DOI: 10.1016/j.ceramint.2018.09.152

    [19] 李克航. 采用光固化成型技术制备氧化铝陶瓷的研究[学位论文]. 天津: 天津大学, 2017

    Li K H. Research on Fabricating Alumina Ceramics Through Stereolithography Technology [Dissertation]. Tianjin: Tianjin University, 2017

    [20] 张帅. 氧化铝的表面改性及光固化浆料的制备研究[学位论文]. 天津: 天津大学, 2017

    Zhang S. Research of Surface Modification of α-Al2O3 and Preparation of UV-Curable Ceramic Suspensions [Dissertation]. Tianjin: Tianjin University, 2017

    [21]

    Wang Z, Huang C Z, Wang J, et al. Development of a novel aqueous hydroxyapatite suspension for stereolithography applied to bone tissue engineering. Ceram Int, 2019, 45(3): 3902 DOI: 10.1016/j.ceramint.2018.11.063

    [22] 杨红霞, 刘卫东. 分散剂在陶瓷浆料制备中的应用. 中国陶瓷工业, 2005(2): 27 DOI: 10.3969/j.issn.1006-2874.2005.02.007

    Yang H X, Liu W D. Application of dispersants in the preparation of slurry. China Ceram Ind, 2005(2): 27 DOI: 10.3969/j.issn.1006-2874.2005.02.007

    [23]

    Irsen St H, Leukers B, Höckling Chr, et al. Bioceramic granulates for use in 3D printing: process engineering aspects. Materialwiss Werkstofftech, 2006, 37(6): 533 DOI: 10.1002/mawe.200600033

    [24]

    Lu K, Hiser M, Wu W. Effect of particle size on three dimensional printed mesh structures. Powder Technol, 2009, 192(2): 178 DOI: 10.1016/j.powtec.2008.12.011

    [25]

    Hwa L C, Rajoo S, Noor A M, et al. Recent advances in 3D printing of porous ceramics: A review. Curr Opin Solid State Mater Sci, 2017, 21(6): 323 DOI: 10.1016/j.cossms.2017.08.002

    [26]

    Cima M, Sachs E, Fan T, et al. Three-Dimensional Printing Techniques: US Patent, 5387380. 1995-2-7

    [27]

    Sun C N, Tian X Y, Wang L, et al. Effect of particle size gradation on the performance of glass-ceramic 3D printing process. Ceram Int, 2017, 43(1): 578 DOI: 10.1016/j.ceramint.2016.09.197

    [28] 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展. 材料工程, 2020, 48(9): 1

    Liu Y, Chen Z W. Research progress in photopolymerization-based 3D printing technology of ceramics. J Mater Eng, 2020, 48(9): 1

    [29]

    Li H, Liu Y S, Liu Y S, et al. Effect of debinding temperature under an argon atmosphere on the microstructure and properties of 3D-printed alumina ceramics. Mater Charact, 2020, 168: 110548 DOI: 10.1016/j.matchar.2020.110548

    [30]

    Li H, Liu Y S, Liu Y S, et al. Influence of debinding holding time on mechanical properties of 3D-printed alumina ceramic cores. Ceram Int, 2021, 47(4): 4884 DOI: 10.1016/j.ceramint.2020.10.061

    [31]

    Wang K, Qiu M, Jiao C, et al. Study on defect-free debinding green body of ceramic formed by DLP technology. Ceram Int, 2020, 46(2): 2438 DOI: 10.1016/j.ceramint.2019.09.237

    [32] 石季平, 白雪, 刘宇阳, 等. AZO靶材热压致密化过程中晶粒生长规律研究. 粉末冶金技术, 2017, 35(5): 335

    Shi J P, Bai X, Liu Y Y, et al. Study on grain growth of AZO target during densification process by hot pressing. Powder Metall Technol, 2017, 35(5): 335

    [33] 孙兰, 贾成厂, 曹瑞军. 纳米粉末烧结的研究现状与前景. 粉末冶金技术, 2006, 24(2): 146 DOI: 10.3321/j.issn:1001-3784.2006.02.015

    Sun L, Jia C C, Cao R J. Research advance on nanopowder sintering. Powder Metall Technol, 2006, 24(2): 146 DOI: 10.3321/j.issn:1001-3784.2006.02.015

    [34]

    Farzin A, Hassan S, Ebrahimi-Barough S, et al. A facile two step heat treatment strategy for development of bioceramic scaffolds for hard tissue engineering applications. Mater Sci Eng C, 2019, 105: 110009 DOI: 10.1016/j.msec.2019.110009

    [35]

    Wu H D, Liu W, He R X, et al. Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceram Int, 2017, 43(1): 968 DOI: 10.1016/j.ceramint.2016.10.027

    [36]

    Ahmed M K, Ramadan R, Afifi M, et al. Au-doped carbonated hydroxyapatite sputtered on alumina scaffolds via pulsed laser deposition for biomedical applications. J Mater Res Technol, 2020, 9(4): 8854 DOI: 10.1016/j.jmrt.2020.06.006

    [37] 刘芳, 周科朝, 刘咏. 原始粉料的球磨工艺对Ti/HA生物复合材料性能的影响. 粉末冶金技术, 2005, 23(2): 116

    Liu F, Zhou K C, Liu Y. Effect of milling process on properties of Ti/HA biomedical composites. Powder Metall Technol, 2005, 23(2): 116

    [38]

    Sharifianjazi F, Pakseresht A H, Asl M S, et al. Hydroxyapatite consolidated by zirconia: applications for dental implant. J Compos Compd, 2020, 2(2): 26

    [39]

    Li X J, Yuan Y, Liu L Y, et al. 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio-Des Manuf, 2020, 3(1): 15 DOI: 10.1007/s42242-019-00056-5

    [40]

    He D S, Zhuang C, Xu S Z, et al. 3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances. Bioact Mater, 2016, 1(1): 85 DOI: 10.1016/j.bioactmat.2016.08.001

    [41]

    Wang X J, Molino B Z, Pitkanen S, et al. 3D scaffolds of polycaprolactone/copper-doped bioactive glass: architecture engineering with additive manufacturing and cellular assessments in a coculture of bone marrow stem cells and endothelial cells. ACS Biomater Sci Eng, 2019, 5(9): 4496 DOI: 10.1021/acsbiomaterials.9b00105

    [42]

    Galeta T, Raos P, Stojšić J, et al. Influence of structure on mechanical properties of 3D printed objects. Procedia Eng, 2016, 149: 100 DOI: 10.1016/j.proeng.2016.06.644

    [43]

    Ali D, Ozalp M, Blanquer S B, et al. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis. Eur J Mech B Fluids, 2020, 79: 376 DOI: 10.1016/j.euromechflu.2019.09.015

    [44]

    Chen H, Liu Y, Wang C Y, et al. Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Comput Biol Med, 2021, 130: 104241 DOI: 10.1016/j.compbiomed.2021.104241

    [45] 王壮. 轻量化鞋底结构设计及3D打印[学位论文]. 哈尔滨: 哈尔滨工业大学, 2020

    Wang Z. Lightweight Sole Structure Design and 3D Printing [Dissertation]. Harbin: Harbin Institute of Technology, 2020

    [46]

    Yu S X, Sun J X, Bai J M, et al. Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Mater Des, 2019, 182: 108021 DOI: 10.1016/j.matdes.2019.108021

    [47]

    Yao Y X, Qin W, Xing B H, et al. High performance hydroxyapatite ceramics and a triply periodic minimum surface structure fabricated by digital light processing 3D printing. J Adv Ceram, 2021, 10(1): 39 DOI: 10.1007/s40145-020-0415-4

    [48]

    Liu S, Mo L, Bi G Y, et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry. Ceram Int, 2021, 47(15): 21108 DOI: 10.1016/j.ceramint.2021.04.114

    [49]

    Liu Z B, Liang H X, Shi T S, et al. Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceram Int, 2019, 45(8): 11079 DOI: 10.1016/j.ceramint.2019.02.195

    [50]

    Huang X L, Dai H L, Hu Y F, et al. Development of a high solid loading β-TCP suspension with a low refractive index contrast for DLP-based ceramic stereolithography. J Eur Ceram Soc, 2021, 41(6): 3743 DOI: 10.1016/j.jeurceramsoc.2020.12.047

    [51]

    Macchetta A, Turner I G, Bowen C R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater, 2009, 5(4): 1319 DOI: 10.1016/j.actbio.2008.11.009

    [52]

    Tang Y, Zhao K, Hu L, et al. Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceram Int, 2013, 39(8): 9703 DOI: 10.1016/j.ceramint.2013.04.038

    [53]

    Marques C F, Olhero S M, Torres P M, et al. Novel sintering-free scaffolds obtained by additive manufacturing for concurrent bone regeneration and drug delivery: Proof of concept. Sci Eng C, 2019, 94: 426 DOI: 10.1016/j.msec.2018.09.050

    [54]

    Kamboj N, Rodríguez M A, Rahmani R, et al. Bioceramic scaffolds by additive manufacturing for controlled delivery of the antibiotic vancomycin. Proc Est Acad Sci, 2019, 68(2): 185 DOI: 10.3176/proc.2019.2.10

    [55]

    Touri M, Moztarzadeh F, Osman N A A, et al. Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications. Ceram Int, 2019, 45(1): 805 DOI: 10.1016/j.ceramint.2018.09.247

    [56]

    Dang W T, Yi K, Ju E G, et al. 3D printed bioceramic scaffolds as a universal therapeutic platform for synergistic therapy of osteosarcoma. ACS Appl Mater Interfaces, 2021, 13(16): 18488 DOI: 10.1021/acsami.1c00553

    [57]

    Tamjid E, Bohlouli M, Mohammadi S, et al. Sustainable drug release from highly porous and architecturally engineered composite scaffolds prepared by 3D printing. J Biomed Mater Res A, 2020, 108(6): 1426 DOI: 10.1002/jbm.a.36914

    [58]

    Ma H S, Feng C, Chang J, et al. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater, 2018, 79: 37 DOI: 10.1016/j.actbio.2018.08.026

    [59]

    Xu C J, Yuan Z L, Kohler N, et al. FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc, 2009, 131(42): 15346 DOI: 10.1021/ja905938a

    [60]

    Jaque D, Maestro L M, Del Rosal B, et al. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16): 9494 DOI: 10.1039/C4NR00708E

    [61]

    Da Li G, Lin Y, Pan T H, et al. Synthesis and characterization of magnetic bioactive glass-ceramics containing Mg ferrite for hyperthermia. Mater Sci Eng C, 2010, 30(1): 148 DOI: 10.1016/j.msec.2009.09.011

    [62] 董少杰, 王旭东, 沈国芳, 等. 生物陶瓷支架的功能改性及应用研究进展. 无机材料学报, 2020, 35(8): 867 DOI: 10.15541/jim20190561

    Dong S J, Wang X D, Shen G F, et al. Research progress on functional modifications and applications of bioceramic scaffolds. J Inorg Mater, 2020, 35(8): 867 DOI: 10.15541/jim20190561

    [63]

    Ma H S, Jiang C, Zhai D, et al. A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Adv Funct Mater, 2016, 26(8): 1197 DOI: 10.1002/adfm.201504142

    [64]

    Ma H S, Ma Z J, Chen Q F, et al. Bifunctional, copper-doped, mesoporous silica nanosphere-modified, bioceramic scaffolds for bone tumor therapy. Front Chem, 2020, 8: 610232 DOI: 10.3389/fchem.2020.610232

    [65]

    Ma H S, Li T, Huan Z G, et al. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG Asia Mater, 2018, 10(4): 31 DOI: 10.1038/s41427-018-0015-8

    [66]

    Ma H S, Luo J, Sun Z, et al. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials, 2016, 111: 138 DOI: 10.1016/j.biomaterials.2016.10.005

    [67]

    Zhang Y L, Zhai D, Xu M C, et al. 3D-printed bioceramic scaffolds with a Fe3O4/graphene oxide nanocomposite interface for hyperthermia therapy of bone tumor cells. J Mater Chem B, 2016, 4(17): 2874 DOI: 10.1039/C6TB00390G

    [68]

    Zhuang H, Lin R, Liu Y, et al. Three-dimensional-printed bioceramic scaffolds with osteogenic activity for simultaneous photo/magnetothermal therapy of bone tumors. ACS Biomater Sci Eng, 2019, 5(12): 6725 DOI: 10.1021/acsbiomaterials.9b01095

    [69]

    Hembus J, Rößler L, Jackszis M, et al. Influence of metallic deposition on ceramic femoral heads on the wear behavior of artificial hip joints: A simulator study. Materials, 2020, 13(16): 3569 DOI: 10.3390/ma13163569

    [70]

    Cook S D, Thomas K A, Kay J F, et al. Hydroxyapatite-coated titanium for orthopedic implant applications. Clin Orthop Relat Res, 1988, 232: 225

    [71]

    Lombardi Jr A V, Berend K R, Mallory T H. Hydroxyapatite-coated titanium porous plasma spray tapered stem: experience at 15 to 18 years. Clin Orthop Relat Res, 2006, 453: 81 DOI: 10.1097/01.blo.0000238872.01767.09

    [72]

    Nakahira A, Murakami T, Onoki T, et al. Fabrication of porous hydroxyapatite using hydrothermal hot pressing and post-sintering. J Am Ceram Soc, 2005, 88(5): 1334 DOI: 10.1111/j.1551-2916.2005.00238.x

    [73]

    Shao H F, Liu A, Ke X R, et al. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. J Mater Chem B, 2017, 5(16): 2941 DOI: 10.1039/C7TB00217C

    [74]

    Shao H F, Sun M, Zhang F, et al. Custom repair of mandibular bone defects with 3D printed bioceramic scaffolds. J Dent Res, 2018, 97(1): 68 DOI: 10.1177/0022034517734846

    [75]

    Maliha S G, Lopez C D, Coelho P G, et al. Bone tissue engineering in the growing calvarium using dipyridamole-coated 3D printed bioceramic scaffolds: construct optimization and effects to cranial suture patency. Plast Reconstr Surg, 2020, 145(2): 337e DOI: 10.1097/PRS.0000000000006483

    [76]

    Shen C C, Zhang Y, Li Q F, et al. Application of three-dimensional printing technique in artificial bone fabrication for bone defect after mandibular angle ostectomy. Chin J Rep Reconstr Surg, 2014, 28(3): 300

    [77]

    Maroulakos M, Kamperos G, Tayebi L, et al. Applications of 3D printing on craniofacial bone repair: A systematic review. J Dent, 2019, 80: 1 DOI: 10.1016/j.jdent.2018.11.004

    [78]

    Lee U L, Lim J Y, Park S N, et al. A clinical trial to evaluate the efficacy and safety of 3D printed bioceramic implants for the reconstruction of zygomatic bone defects. Materials, 2020, 13(20): 4515 DOI: 10.3390/ma13204515

图(6)  /  表(5)
计量
  • 文章访问数:  1926
  • HTML全文浏览量:  1341
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 录用日期:  2021-05-10
  • 网络出版日期:  2021-05-10
  • 刊出日期:  2022-04-25

目录

/

返回文章
返回