高级检索

冷喷涂陶瓷金属化沉积机理研究进展

秦加浩, 方凯, 连信宇, 王永刚, 王江, 所新坤

秦加浩, 方凯, 连信宇, 王永刚, 王江, 所新坤. 冷喷涂陶瓷金属化沉积机理研究进展[J]. 粉末冶金技术, 2022, 40(2): 118-125. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040001
引用本文: 秦加浩, 方凯, 连信宇, 王永刚, 王江, 所新坤. 冷喷涂陶瓷金属化沉积机理研究进展[J]. 粉末冶金技术, 2022, 40(2): 118-125. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040001
QIN Jia-hao, FANG Kai, LIAN Xin-yu, WANG Yong-gang, WANG Jiang, SUO Xin-kun. Research progress on deposition mechanism of ceramic metallization by cold spraying[J]. Powder Metallurgy Technology, 2022, 40(2): 118-125. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040001
Citation: QIN Jia-hao, FANG Kai, LIAN Xin-yu, WANG Yong-gang, WANG Jiang, SUO Xin-kun. Research progress on deposition mechanism of ceramic metallization by cold spraying[J]. Powder Metallurgy Technology, 2022, 40(2): 118-125. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040001

冷喷涂陶瓷金属化沉积机理研究进展

详细信息
    通讯作者:

    所新坤: E-mail: suoxinkun@nbu.edu.cn

  • 中图分类号: TG142.71

Research progress on deposition mechanism of ceramic metallization by cold spraying

More Information
  • 摘要: 陶瓷与金属由于在热膨胀系数上的差异,导致在热加工后结合强度较差。冷喷涂是一种新型绿色环保的表面涂层和增材制造技术,其优点是结合强度较高,对基体热影响小,残余应力为压应力,能够直接在陶瓷表面制备结合力较高的金属涂层,是一种潜在的陶瓷金属化技术。本文综述了国内外冷喷涂陶瓷金属化技术的研究进展和技术现状,着重介绍了冷喷涂陶瓷金属化涂层的组织结构特点和工艺优化方案,分析了金属陶瓷界面的两种结合现象和结合机理,并展望了冷喷涂陶瓷金属化技术的应用设想。
    Abstract: The difference in thermal expansion coefficient between ceramics and metals results in poor bonding strength after heat processing. Cold spraying (CS) is a new and green surface coating and additive manufacturing technology with the advantages as high bonding strength, little thermal impact on substrates, and residual compressive stress. The cold spraying is recognized as a potential ceramic metallization method because it can be employed to fabricate the metallic coatings on the ceramics directly with the relatively high bonding strength. The research progress and technical status of the cold spray ceramic metallization technology at home and abroad were reviewed in this article, the microstructure characteristics and process optimization were analyzed, the bonding phenomena and mechanisms of coatings were discussed, and the application potential and challenge of the cold spray ceramic metallization technology were summarized.
  • 高速钢(high speed steel,HSS)也被称为高速工具钢,是一种具有高硬度、高耐磨性和高耐热性的工具钢。高速钢在金属切削工具、滚动辐条、耐磨件、油泵和喷嘴[12]等方面有着广泛的应用,同时也被用在高端冰刀刀刃领域。使用传统铸造方法制备的高速钢存在成分偏析、碳化物粗大和夹杂物含量高等问题,在后续的热处理或者产品加工时会发生变形甚至开裂,限制了高速钢的应用[36],粉末冶金高速钢从根本上解决了这些问题,经过几十年的发展,粉末冶金高速钢已经发展到第三代[7]。S590粉末冶金高速钢(S590 HSS)是由奥地利Böhler公司开发出的第三代粉末冶金高速钢,成分与ASP2030模具钢相同。与前几代产品相比,第三代产品的粉末颗粒更细,分散更均匀,同时有着更高的纯净度。这种高速钢具有高耐磨粒磨损、高韧性、高抗压强度,以及良好的淬透性和热处理稳定性。

    淬火热处理是将高速钢置于AC3(加热时转变为奥氏体的终了温度)或AC1(加热时珠光体向奥氏体转变的温度)临界温度之上,然后控制冷却,可以获得所需的马氏体或贝氏体组织。淬火温度是决定高速钢相变行为和残余奥氏体含量的关键因素[8]。合金元素在基体中的溶解度受到淬火温度的影响,继而对马氏体相变的起始和终了温度产生明显的影响。选择一个最佳淬火温度至关重要,大量研究表明,过高的淬火温度会导致高速钢内奥氏体晶粒粗化以及缺陷产生[911],对高速钢力学性能产生不利影响。相反,过低淬火温度会增加未溶解的一次碳化物含量,同时减少二次碳化物的含量。这些变化对高速钢的二次硬化效果产生了负面影响,并降低了其韧性[1213]。值得注意的是,原始奥氏体晶粒的大小也对高速钢力学性能产生直接或间接的影响,更细的晶粒和基体碳含量显示出更优异的韧性[1415]。刘博文等[16]研究了M42喷射成形高速钢热处理中淬火温度对碳化物转变机制的影响,分析了不同热处理制度下材料显微组织、硬度、抗弯强度及碳化物的演变规律。郝勇飞等[17]研究了高速钢中碳化物的析出行为,发现试样经1250 ℃保温6 h后,M6C碳化物发生了溶解现象并且有长大的趋势,而MC碳化物无明显变化。李强等[18]研究了淬火温度对M4粉末高速钢组织和性能的影响,结果表明,M4粉末高速钢同时获得高硬度和高韧性的最佳淬火温度区间为1180~1190 ℃。Veerababu等[8]研究了淬火温度对CrMo钢奥氏体和析出碳化物的影响,结果发现,高淬火温度可以增强奥氏体的稳定性。

    目前,关于淬火温度对高速钢力学性能影响的研究较少,难以满足工业化生产的需要。本文通过等离子旋转电极雾化和热等静压法制备S590粉末冶金高速钢,研究淬火温度对S590粉末冶金高速钢组织结构、硬度、抗压强度、抗弯强度和冲击韧性的影响。

    采用等离子旋转电极雾化法制备S590高速钢金属粉末,转速13000 r·min−1,电流2600 A,粉末形貌和粒度分布如图1所示。从图1可以看出,粉末形貌主要呈规则球形,少部分为近似球形,粉末有着很高的球形度和表面光洁度。粉末的平均粒径为107.33 μm,主要集中分布在26~208 μm和208~954 μm之间。金属粉末经Avure Technologies AB QIH-9热等静压机烧结(烧结温度1180 ℃,烧结压力120 MPa,烧结时间2 h)得到完全致密钢锭,钢锭的相对密度可达99%以上,烧结钢锭的化学成分如表1所示。实验设计了四个淬火温度(1050、1100、1150、1180 ℃),淬火之后进行一次550 ℃回火(1 h),一次−196 ℃深冷处理(4 h)和两次550 ℃回火(1 h),研究淬火温度对S590粉末冶金高速钢力学性能的影响。

    图  1  S590高速钢粉末形貌(a)和粒度分布(b)
    Figure  1.  Powder morphology (a) and particle size distribution (b) of S590 HSS
    表  1  S590粉末冶金高速钢化学成分(质量分数)
    Table  1.  Chemical composition of S590 HSS %
    CSiMnCrMoWVCoFe
    1.280.600.294.104.886.182.998.17余量
    下载: 导出CSV 
    | 显示表格

    采用TH320全洛氏硬度计测试样品的硬度,加载载荷为1471 N,保压时间为15 s,每个样品测试5个点,取平均值为最终硬度值。使用GNT2000Y万能材料实验机测试试样的抗压强度和抗弯强度,实验温度为室温,抗压强度试样尺寸为ϕ4 mm×8 mm,抗弯强度试样尺寸为5 mm×5 mm×20 mm,跨距为14.5 mm,表面经过精加工,每种样品测量三次,取平均值。根据GB/T 229-2020国家标准,利用NI150金属摆锤冲击试验机进行夏比摆锤冲击实验测试试样冲击韧性值,冲击试样为10 mm×10 mm×55 mm无缺口冲击试样,每种样品测量三次,取平均值。通过HITACHI Regulus 8100冷场发射扫描电镜(scanning electron microscope,SEM)观察S590 HSS显微组织及断口。采用日本理学Smartlab IV X射线衍射仪(X-ray diffraction,XRD)分析试样相组成,Cu靶,工作电压40 kV,扫描角度20°~80°。

    图2为经过不同淬火温度热处理的S590粉末冶金高速钢显微组织。由图可以看到,组织中析出大量碳化物,而且随着淬火温度的升高,晶粒逐渐粗化。在1180 ℃淬火组织中部分碳化物逐渐溶入基体中,可以看到粗大的晶粒,还能观察到碳化物数量减少,晶粒形状由近似圆形趋于具有棱角的不规则形状,由于没有足够数量的碳化物钉扎晶界以防止晶粒粗化,更有可能形成裂纹[19]

    图  2  不同淬火温度下S590粉末冶金高速钢微观组织:(a)、(b)1050 ℃;(c)、(d)1100 ℃;(e)、(f)1150 ℃;(g)、(h)1180 ℃
    Figure  2.  Microstructure of S590 HSS at the different quenching temperatures: (a), (b) 1050 ℃; (c), (d) 1100 ℃; (e), (f) 1150 ℃; (g), (h) 1180 ℃

    图3为不同淬火温度下S590粉末冶金高速钢的X射线衍射图谱。从图中可以看出,在不同淬火组织中均检测到了M6C和MC型碳化物,4个温度下的X射线衍射图谱类似。当淬火温度为1050 ℃时,M6C和MC型碳化物均有明显的衍射峰,但是随着淬火温度的升高,两种碳化物的衍射峰强度都在一定程度上降低,说明这两种碳化物的含量减少,这是由于较高的淬火温度使得碳化物溶入基体造成的,图1也可以证明这一现象。

    图  3  不同淬火温度下S590粉末冶金高速钢的X射线衍射图谱
    Figure  3.  XRD patterns of S590 HSS at the different quenching temperatures

    表2是经过不同热处理工艺的S590粉末冶金高速钢硬度。从表可以看到,S590粉末冶金高速钢的硬度随着淬火温度的上升而上升,经过3次回火,高速钢的硬度由HRC 63.2增加到HRC 67.8,这是因为随着温度的升高,碳化物溶入基体中导致基体C含量升高。当淬火温度从1050 ℃升高到1100 ℃时,硬度提升最为明显。由图3可知,淬火温度从1050 ℃升高到1100 ℃,两种碳化物的衍射峰强度下降程度最大,基体中的C元素含量提升。此外,回火热处理S590粉末冶金高速钢硬度先上升再下降。这是因为在第一次回火后,淬火马氏体发生分解形成回火马氏体,并弥散析出细小的二次碳化物,使得硬度降低。随着回火次数的增加,越来越多细小且分布均匀的碳化物析出,产生了弥散强化,并且在回火的过程中越来越多的残余奥氏体发生相变,转变为硬度更高的回火马氏体,使得S590粉末高速钢的硬度再次升高,即二次硬化。

    表  2  不同热处理工艺下S590粉末高速钢的硬度
    Table  2.  Hardness of S590 HSS with the different heat treatment processes
    温度 / ℃状态硬度,HRC
    1050一次回火64.2
    110067.5
    115067.4
    118067.8
    1050深冷64.1
    110067.1
    115067.5
    118068.0
    1050二次回火63.5
    110067.1
    115067.9
    118068.0
    1050三次回火63.2
    110066.9
    115066.8
    118067.8
    下载: 导出CSV 
    | 显示表格

    不同淬火温度下S590粉末冶金高速钢的抗压强度如图4(a)所示。当淬火温度为1180 ℃时,抗压强度最高,为3827 MPa,与1050 ℃相比提高了10.3%。不同淬火温度下S590粉末冶金高速钢的应力–应变曲线如图4(b)所示。由图可知,S590粉末冶金高速钢的变形过程可分为四个不同的阶段:强加工硬化阶段、稳定加工硬化阶段、稳态流变阶段和失效阶段。在强加工硬化阶段,材料内部的位错增殖导致高速钢的工程应力迅速增加,达到一个很高的水平。在稳定的加工硬化阶段,即应变12%~14%,大量的位错相互抵消,应力缓慢增加,直到达到峰值应力。达到峰值应力后,材料进入稳态流变阶段,应力趋于稳定。最后,当应变达到一定水平时,材料失效。

    图  4  不同淬火温度下S590粉末冶金高速钢抗压强度(a)和应力–应变曲线(b)
    Figure  4.  Compressive strength (a) and stress-strain curve (b) of S590 HSS at the different quenching temperatures

    对热处理过后的样品进行抗弯强度测试,结果如图5所示。由图可知,随着淬火温度的上升,S590粉末冶金高速钢抗弯强度先上升后下降。当淬火温度为1100 ℃时,试样抗弯强度最高,为5473 MPa。随着淬火温度升高,马氏体中合金元素和碳元素含量增加,导致材料脆性增加,同时降低回火马氏体的韧性。同时,淬火温度升高会促使未溶解的碳化物发生长大,在回火态试样中形成更粗大的碳化物结构,这种较粗碳化物的形成加剧了碳化物在整个试样中分布的不均匀性,导致S590粉末冶金高速钢的抗弯强度下降。

    图  5  不同淬火温度下S590粉末冶金高速钢抗弯强度(a)和应力–应变曲线(b)
    Figure  5.  Bending strength (a) and stress-strain curves (b) of S590 HSS at the different quenching temperatures

    图6为S590粉末冶金高速钢的抗弯断口形貌。由图可知,随着淬火温度上升,S590断口韧窝数量逐渐减少,撕裂岭特征减少,逐渐观察不到放射状条纹,断裂方式由准解理断裂向脆性的解理断裂过渡,抗弯强度下降。由图6(a)、图6(c)可以看到,断裂源出现在试样边缘,在材料发生变形时,产生裂纹等缺陷并迅速扩展,使材料发生断裂。在图6(e)和图6(g)中无明显断裂源,内部组织均匀,从材料表面发生断裂。由放大图6(f)可知,1150 ℃淬火试样韧窝明显,淬火温度的升高使得碳化物长大,裂纹源更容易在粗大的碳化物附近萌生,导致强度下降。

    图  6  不同淬火温度下S590粉末冶金高速钢抗弯测试断口形貌:(a)、(b)1050 ℃;(c)、(d)1100 ℃;(e)、(f)1150 ℃;(g)、(h)1180 ℃
    Figure  6.  Bending test fracture morphologies of S590 HSS at different quenching temperatures: (a), (b) 1050 ℃; (c), (d) 1100 ℃; (e), (f) 1150 ℃; (g), (h) 1180 ℃

    图7为不同淬火温度下S590粉末冶金高速钢的冲击韧性。由图可知,随着淬火温度升高,S590粉末冶金高速钢的冲击韧性呈下降趋势。在1050 ℃淬火时韧性最高,可达76.9 J·cm−2。随着淬火温度的上升,高速钢的晶粒逐渐粗化,韧性降低。

    图  7  不同淬火温度下S590粉末冶金高速钢的冲击韧性
    Figure  7.  Impact toughness of S590 HSS at the different quenching temperatures

    图8为S590粉末冶金高速钢的冲击断口形貌。当淬火温度为1050 ℃时,试样断口形貌包括韧窝和撕裂岭,断裂面整体看起来较为平整,此时发生准解理断裂,韧性最高;当淬火温度为1100 ℃时,可以观察到明显的放射状条纹以及断裂源,有较多的撕裂岭特征,此时发生准解理断裂;当淬火温度为1150 ℃时,放射状条纹变得不明显且观察不到明显的断裂源,撕裂岭特征减少,断裂形式由准解理断裂向解理断裂转变,韧性降低;当淬火温度为1180 ℃时,没有明显的断裂源,断口平整,微观下可以看到冰糖状的沿晶断口,此时发生脆性的解理断裂,韧性最低。

    图  8  不同淬火温度下S590粉末冶金高速钢冲击断口形貌:(a)、(b)1050 ℃;(c)、(d)1100 ℃;(e)、(f)1150 ℃;(g)、(h)1180 ℃
    Figure  8.  Impact fracture morphologies of S590 HSS at the different quenching temperatures: (a), (b) 1050 ℃; (c), (d) 1100 ℃; (e), (f) 1150 ℃; (g), (h) 1180 ℃

    (1)热处理S590粉末冶金高速钢的微观结构主要包括马氏体、M6C型碳化物和MC型碳化物。随淬火温度升高,碳化物逐渐溶入基体,碳化物的钉扎作用减弱,基体晶粒尺寸变大。

    (2)S590粉末冶金高速钢的硬度随淬火温度升高呈上升趋势,在1180 ℃时达到最大(HRC 67.8);抗压强度随着淬火温度的升高而升高,在1180 ℃时达到最高(3827 MPa);抗弯强度随着淬火温度的升高先升高再下降,在1100 ℃时达到最高(5473 MPa);冲击韧性随淬火温度升高而下降,在1050 ℃时达到最高(76.9 J·cm−2)。

    (3)综合显微组织和力学性能,经1100 ℃淬火的S590粉末冶金高速钢有着最高的抗弯强度和良好的冲击韧性,同时硬度和抗压强度也满足使用要求。因此,S590粉末冶金高速钢的最佳淬火温度为1100 ℃。

  • 图  1   冷喷涂技术原理示意图[2]

    Figure  1.   Schematic diagram of the cold spray system[2]

    图  2   原位微锻辅助冷喷涂沉积示意图[45](a)和超音速激光沉积技术原理图[48](b)

    Figure  2.   Principle of in-situ micro-forging assisted cold spraying technology[45] (a) and laser-assisted cold spraying system[48] (b)

    图  3   冷喷涂技术再制造前后对比[54]:(a)修复前;(b)修复后

    Figure  3.   Damaged component (a) and the repaired component by cold spraying (b)[54]

    图  4   预热多晶AlN基体上冷喷涂Al涂层组织结构[62]

    Figure  4.   Cross section microstructure of the cold sprayed Al coating on the heated polycrystalline AlN substrate[62]

    图  5   拉伸试验后基体表面形貌[68]:(a)基体表面形貌;(b)~(d)铝涂层下表面氧化铝残留物形貌

    Figure  5.   Fracture morphologies of the coatings and substrates after tensile test[68]: (a) the substrate; (b)~(d) Al2O3 debris on the coatings

    图  6   氧化铝基体温度对冷喷涂铝涂层结合强度的影响[69]

    Figure  6.   Effect of Al2O3 substrate temperature on the bonding strength between Al coatings and substrates[69]

    图  7   基体粗糙度对Al/Al2O3、Cu/Al2O3、Ti/SiC三种体系结合强度的影响[72]

    Figure  7.   Influence of the substrate roughness on the bonding strength of Al/Al2O3, Cu/ Al2O3, and Ti/SiC systems[72]

    图  8   不同类型氧化铝基体对冷喷涂铝涂层结合强度的影响[71]

    Figure  8.   Influence of the Al2O3 substrate in different crystalline structure on the bonding strength of Al coatings[71]

    图  9   冷喷Al涂层与AlN单晶界面组织结构(a),Al晶粒选区电子衍射图(b),AlN基体选区电子衍射图(c),Al和AlN之间取向关系模拟衍射图(d)[62]

    Figure  9.   Interface microstructure of the cold sprayed Al film and AlN single-crystalline substrate (a), selected area electron diffraction (SAED) patterns taken near the interface of the Al crystallite (b), SAED patterns taken near the interface of the AlN substrate (c), orientation relationship between Al and AlN given as the simulated diffraction patterns (d)[62]

    图  10   Cu/AlN(a)和Al/ZrO2(b)界面处显微形貌以及相应的快速傅里叶变换图[63]

    Figure  10.   Cu/AlN (a) and Al/ZrO2 (b) interface images at high-magnification and the corresponding fast Fourier transform patterns[63]

    表  1   冷喷涂陶瓷金属化结合机理研究文献汇总

    Table  1   Bonding mechanisms of the cold sprayed ceramic metallization coatings

    作者年份粉末基体结合机理结合强度 / MPa文献
    Imbriglio等2019TiAl2O3化学结合,机械结合250.0[67]
    Wüstefeld等2017AlAlN异质外延,机械结合42.0[62]
    Qin等2021AlAl2O3机械结合,化学结合29.6[68]
    Drehmann等2018AlSiC机械结合27.0[71]
    Kromer等2018AlAl2O3机械结合20.0[72]
    Kromer等2018CuAl2O3机械结合19.0[72]
    Drehmann等2018AlSi3N4机械结合18.0[71]
    Kromer等2018TiSiC机械结合17.0[72]
    Drehmann等2018AlMgF2机械结合15.0[71]
    Drehmann等2014,2018AlAl2O3异质外延,机械结合12.0[69,71]
    Ko等2016CuAlN化学结合,机械结合[63]
    Ko等2016AlZrO2化学结合,机械结合[63]
    King等2007~2008,2010AlPZT[7476]
    Rafaja等2009TiAl2O3异质外延,机械结合[64]
    下载: 导出CSV
  • [1]

    Alkhimov A P, Kosarev V F, Papyrin A N. A method of “cold” gas-dynamic deposition. Sov Phys Dokl, 1990, 35: 1047

    [2]

    Assadi H, Kreye H, Gärtner F, et al. Cold spraying — A materials perspective. Acta Mater, 2016, 116: 382 DOI: 10.1016/j.actamat.2016.06.034

    [3]

    Champagne V, Helfritch D. The unique abilities of cold spray deposition. Int Mater Rev, 2016, 61(7): 437 DOI: 10.1080/09506608.2016.1194948

    [4]

    Assadi H, Gärtner F, Stoltenhoff T, et al. Bonding mechanism in cold gas spraying. Acta Mater, 2003, 51(15): 4379 DOI: 10.1016/S1359-6454(03)00274-X

    [5]

    Henao J, Bolelli G, Concustell A, et al. Deposition behavior of cold-sprayed metallic glass particles onto different substrates. Surf Coat Technol, 2018, 349: 13 DOI: 10.1016/j.surfcoat.2018.05.047

    [6]

    Henao J, Concustell A, Dosta S, et al. Deposition mechanisms of metallic glass particles by cold gas spraying. Acta Mater, 2017, 125: 327 DOI: 10.1016/j.actamat.2016.12.007

    [7]

    Sun C C, Zhou X L, Xie C. Effect of processing conditions on Al-based amorphous/nanocrystalline coating by cold-spraying. Surf Coat Technol, 2019, 362: 97 DOI: 10.1016/j.surfcoat.2019.01.096

    [8]

    Yoon S, Kim J, Bae G, et al. Formation of coating and tribological behavior of kinetic sprayed Fe-based bulk metallic glass. J Alloys Compd, 2011, 509(2): 347 DOI: 10.1016/j.jallcom.2010.09.024

    [9]

    Wang Q, Han P, Yin S, et al. Current research status on cold sprayed amorphous alloy coatings: A review. Coatings, 2021, 11(2): 206 DOI: 10.3390/coatings11020206

    [10]

    Guo X P, Chen J F, Yu H L, et al. A study on the microstructure and tribological behavior of cold-sprayed metal matrix composites reinforced by particulate quasicrystal. Surf Coat Technol, 2015, 268: 94 DOI: 10.1016/j.surfcoat.2014.05.062

    [11]

    Khun N W, Li R T, Loke K, et al. Effects of Al‒Cr‒Fe quasicrystal content on tribological properties of cold-sprayed titanium composite coatings. Tribol Trans, 2015, 58(4): 616 DOI: 10.1080/10402004.2014.991860

    [12]

    Ahn J E, Kim Y K, Yoon S H, et al. Tuning the microstructure and mechanical properties of cold sprayed equiatomic cocrfemnni high-entropy alloy coating layer. Met Mater Int, 2020, 27: 2406

    [13] 辛蔚, 王玉江, 魏世丞, 等. 热喷涂制备高熵合金涂层的研究现状与展望. 工程科学学报, 2021, 43(2): 170

    Xin W, Wang Y J, Wei S C, et al. Research progress of the preparation of high entropy alloy coatings by spraying. Chin J Eng, 2021, 43(2): 170

    [14]

    Alhulaifi A S, Buck G A, Arbegast W J. Numerical and experimental investigation of cold spray gas dynamic effects for polymer coating. J Therm Spray Technol, 2012, 21(5): 852 DOI: 10.1007/s11666-012-9743-4

    [15]

    Khalkhali Z, Rothstein J P. Characterization of the cold spray deposition of a wide variety of polymeric powders. Surf Coat Technol, 2020, 383: 125251 DOI: 10.1016/j.surfcoat.2019.125251

    [16]

    Bush T B, Khalkhali Z, Champagne V, et al. Optimization of cold spray deposition of high-density polyethylene powders. J Therm Spray Technol, 2017, 26(7): 1548 DOI: 10.1007/s11666-017-0627-5

    [17]

    Xu Y, Hutchings I M. Cold spray deposition of thermoplastic powder. Surf Coat Technol, 2006, 201(6): 3044 DOI: 10.1016/j.surfcoat.2006.06.016

    [18]

    Ravi K, Ichikawa Y, Deplancke T, et al. Development of ultra-high molecular weight polyethylene (UHMWPE) coating by cold spray technique. J Therm Spray Technol, 2015, 24(6): 1015 DOI: 10.1007/s11666-015-0276-5

    [19]

    Ravi K, Ichikawa Y, Ogawa K, et al. Mechanistic study and characterization of cold-sprayed ultra-high molecular weight polyethylene-nano-ceramic composite coating. J Therm Spray Technol, 2015, 25(1-2): 160

    [20]

    Ravi K, Deplancke T, Ogawa K, et al. Understanding deposition mechanism in cold sprayed ultra high molecular weight polyethylene coatings on metals by isolated particle deposition method. Addit Manuf, 2018, 21: 191

    [21]

    Ravi K, Deplancke T, Lame O, et al. Influence of nanoceramic interlayer on polymer consolidation during cold-spray coating formation. J Mater Process Technol, 2019, 273: 116254 DOI: 10.1016/j.jmatprotec.2019.116254

    [22]

    Wesley L S, Ravi K, Bernard C, et al. Deposition mechanism analysis of cold-sprayed fluoropolymer coatings and its wettability evaluation. J Therm Spray Technol, 2020, 29(7): 1643 DOI: 10.1007/s11666-020-01059-w

    [23]

    Tillmann W, Zajaczkowski J F. Investigation of low-pressure cold-gas dynamic spraying of polyamide-12 (PA12) on steel surfaces // IOP Conf Ser: Mater Sci Eng. Chongqin, 2019: 1

    [24]

    Winnicki M, Gibas A, Baszczuk A, et al. Low pressure cold spraying of TiO2 on acrylonitrile butadiene styrene (ABS). Surf Coat Technol, 2021, 406: 126717 DOI: 10.1016/j.surfcoat.2020.126717

    [25]

    Liu Y, Wang Y Y, Suo X K, et al. Impact-induced bonding and boundary amorphization of TiN ceramic particles during room temperature vacuum cold spray deposition. Ceram Int, 2016, 42(1): 1640 DOI: 10.1016/j.ceramint.2015.09.116

    [26]

    Hasniyati M R, Zuhailawati H, Sivakumar R, et al. Optimization of multiple responses using overlaid contour plot and steepest methods analysis on hydroxyapatite coated magnesium via cold spray deposition. Surf Coat Technol, 2015, 280: 250 DOI: 10.1016/j.surfcoat.2015.09.006

    [27]

    Zhang Z C, Liu F L, Han E H, et al. Effects of Al2O3 on the microstructures and corrosion behavior of low-pressure cold gas sprayed Al 2024-Al2O3 composite coatings on AA 2024-T3 substrate. Surf Coat Technol, 2019, 370: 53 DOI: 10.1016/j.surfcoat.2019.04.082

    [28]

    Wang Q, Spencer K, Birbilis N, et al. The influence of ceramic particles on bond strength of cold spray composite coatings on AZ91 alloy substrate. Surf Coat Technol, 2010, 205(1): 50 DOI: 10.1016/j.surfcoat.2010.06.008

    [29]

    Shockley J M, Descartes S, Vo P, et al. The influence of Al2O3 particle morphology on the coating formation and dry sliding wear behavior of cold sprayed Al–Al2O3 composites. Surf Coat Technol, 2015, 270: 324 DOI: 10.1016/j.surfcoat.2015.01.057

    [30]

    Qiu X, Tariq N H, Qi L, et al. Influence of particulate morphology on microstructure and tribological properties of cold sprayed A380/Al2O3 composite coatings. J Mater Sci Technol, 2020, 44: 9 DOI: 10.1016/j.jmst.2020.01.028

    [31]

    Irissou E, Legoux J G, Arsenault B, et al. Investigation of Al‒Al2O3 cold spray coating formation and properties. J Therm Spray Technol, 2007, 16(5-6): 661 DOI: 10.1007/s11666-007-9086-8

    [32]

    Yu M, Li W Y, Chen H, et al. Effect of matrix/reinforcement combination on cold sprayed coating deposition behaviour. Surf Eng, 2014, 30(11): 796 DOI: 10.1179/1743294414Y.0000000346

    [33]

    Wang Y Y, Normand B, Suo X K, et al. Cold-sprayed AZ91D coating and SiC/AZ91D composite coatings. Coatings, 2018, 8(4): 122 DOI: 10.3390/coatings8040122

    [34]

    Wang Y Y, Normand B, Mary N, et al. Effects of ceramic particle size on microstructure and the corrosion behavior of cold sprayed SiCp/Al 5056 composite coatings. Surf Coat Technol, 2017, 315: 314 DOI: 10.1016/j.surfcoat.2017.02.047

    [35]

    Chen C Y, Xie Y C, Yan X C, et al. Tribological properties of Al/diamond composites produced by cold spray additive manufacturing. Addit Manuf, 2020, 36: 101434

    [36]

    Winnicki M, Kozerski S, Małachowska A, et al. Optimization of ceramic content in nickel–alumina composite coatings obtained by low pressure cold spraying. Surf Coat Technol, 2021, 405: 126732 DOI: 10.1016/j.surfcoat.2020.126732

    [37]

    Wang L, Wang F, Li S, et al. Microstructure and application of alumina-supported Cu-based coating prepared by cold spray. Surf Coat Technol, 2019, 362: 113 DOI: 10.1016/j.surfcoat.2019.01.089

    [38]

    Lioma D, Sacks N, Botef I. Cold gas dynamic spraying of WC–Ni cemented carbide coatings. Int J Refract Met Hard Mater, 2015, 49: 365 DOI: 10.1016/j.ijrmhm.2014.08.017

    [39]

    Lima R S, Karthikeyan J, Kay C M, et al. Microstructural characteristics of cold-sprayed nanostructured WC‒Co coatings. Thin Solid Films, 2002, 416(1-2): 129 DOI: 10.1016/S0040-6090(02)00631-4

    [40]

    Gao P H, Li C J, Yang G J, et al. Influence of substrate hardness on deposition behavior of single porous WC‒12Co particle in cold spraying. Surf Coat Technol, 2008, 203(3-4): 384 DOI: 10.1016/j.surfcoat.2008.09.016

    [41]

    Ji G C, Chen X, Wang H T, et al. Deformation behaviors of cold-sprayed WC‒Co particles. J Therm Spray Technol, 2015, 24(6): 1100 DOI: 10.1007/s11666-015-0252-0

    [42]

    Couto M, Dosta S, Guilemany J M. Comparison of the mechanical and electrochemical properties of WC-17 and 12Co coatings onto Al7075-T6 obtained by high velocity oxy-fuel and cold gas spraying. Surf Coat Technol, 2015, 268: 180 DOI: 10.1016/j.surfcoat.2014.04.034

    [43] 黄群, 秦加浩, 余敏, 等. 冷喷涂技术制备非金属材料涂层的研究进展. 江西科学, 2020, 38(1): 7

    Huang Q, Qin J H, Yu M, et al. Cold spray deposition of non-metallic materials: Research progress and perspectives. Jiangxi Sci, 2020, 38(1): 7

    [44]

    Luo X T, Wei Y K, Wang Y, et al. Microstructure and mechanical property of Ti and Ti6Al4V prepared by an in-situ shot peening assisted cold spraying. Mater Des, 2015, 85: 527 DOI: 10.1016/j.matdes.2015.07.015

    [45]

    Wei Y K, Luo X T, Chu X, et al. Solid-state additive manufacturing high performance aluminum alloy 6061 enabled by an in-situ micro-forging assisted cold spray. Mater Sci Eng A, 2020, 776: 139024 DOI: 10.1016/j.msea.2020.139024

    [46]

    Wei Y K, Luo X T, Ge Y, et al. Deposition of fully dense Al-based coatings via in-situ micro-forging assisted cold spray for excellent corrosion protection of AZ31B magnesium alloy. J Alloys Compd, 2019, 806: 1116 DOI: 10.1016/j.jallcom.2019.07.279

    [47]

    Wei Y K, Li Y J, Zhang Y, et al. Corrosion resistant nickel coating with strong adhesion on AZ31B magnesium alloy prepared by an in-situ shot-peening-assisted cold spray. Corros Sci, 2018, 138: 105 DOI: 10.1016/j.corsci.2018.04.018

    [48]

    Li B, Yao J H, Zhang Q L, et al. Microstructure and tribological performance of tungsten carbide reinforced stainless steel composite coatings by supersonic laser deposition. Surf Coat Technol, 2015, 275: 58 DOI: 10.1016/j.surfcoat.2015.05.040

    [49]

    Luo F, Rocco L, Andrew C, et al. Characteristics of stellite 6 deposited by supersonic laser deposition under optimized parameters. J Iron Steel Res Int, 2013, 20(2): 52 DOI: 10.1016/S1006-706X(13)60056-4

    [50]

    Jiang Y L, Fang L, Yao J H. Deposition behavior at different substrate temperatures by using supersonic laser deposition. J Iron Steel Res Int, 2013, 20(10): 87 DOI: 10.1016/S1006-706X(13)60182-X

    [51]

    Ozdemir O C, Schwartz P, Muftu S, et al. High rate deposition in cold spray. J Therm Spray Technol, 2021, 7: 1

    [52]

    Groenewegen J R. Cold spray strategy for the air force [J/OL]. CSAT Workshop (2020-06-23) [2021-06-01]. https://www.coldsprayteam.com/csat-2020

    [53] 萧玉麟. 动态金属化工艺加速修复飞机零件. 粉末冶金技术, 2016, 34(1): 10

    Xiao Y L. Dynamic metallization process accelerates repairment of aircraft parts. Powder Metall Technol, 2016, 34(1): 10

    [54]

    Schell J. Cold spray aerospace applications [J/OL]. CSAT Workshop (2016-06-22) [2021-06-01]. https://www.coldsprayteam.com/csat-2016

    [55]

    Hardikar K, Vlcek J, Bheemreddy V, et al. Assessing reliability of cold spray sputter targets in photovoltaic manufacturing. J Therm Spray Technol, 2017, 26(7): 1527 DOI: 10.1007/s11666-017-0581-2

    [56] 邹勇明, 吴金岭, 郑宏宇. 钨金属化与氧化铝陶瓷高温共烧. 真空电子技术, 2004, 4: 20 DOI: 10.3969/j.issn.1002-8935.2004.04.007

    Zou Y M, Wu J L, Zheng H Y. Tungsten metallization and alumina high temperature co-firing. Vac Electron, 2004, 4: 20 DOI: 10.3969/j.issn.1002-8935.2004.04.007

    [57]

    Zheng Z Q, Zhang Y, Yi F C, et al. Surface metallization of alumina ceramics: Effects of sintering time and substrate etching. Ceram Int, 2014, 40(8): 12709 DOI: 10.1016/j.ceramint.2014.04.119

    [58]

    Kiele P, Čvančara P, Langenmair M, et al. Thin film metallization stacks serve as reliable conductors on ceramic-based substrates for active implants. IEEE Trans Compon Packag Manuf Technol, 2020, 10(11): 1803 DOI: 10.1109/TCPMT.2020.3026583

    [59]

    Wang Y, Yang Z W, Zhang L X, et al. Low-temperature diffusion brazing of actively metallized Al2O3 ceramic tube and 5A05 aluminum alloy. Mater Des, 2015, 86: 328 DOI: 10.1016/j.matdes.2015.07.112

    [60] 王玲, 康文涛, 高朋召, 等. 陶瓷金属化的方法、机理及影响因素的研究进展. 陶瓷学报, 2019, 40(4): 411

    Wang L, Kang W T, Gao P Z, et al. Research progress of methods, mechanisms and influencing factors of ceramic metallization. J Ceram, 2019, 40(4): 411

    [61] 秦典成, 李保忠, 肖永龙, 等. 陶瓷基板表面金属化研究现状与发展趋势. 材料导报, 2017, 31(30): 286

    Qin D C, Li B Z, Xiao Y L, et al. Research situation and development trend of ceramic metallization, Mater Rev, 2017, 31(30): 286

    [62]

    Wüstefeld C, Rafaja D, Motylenko M, et al. Local heteroepitaxy as an adhesion mechanism in aluminium coatings cold gas sprayed on AlN substrates. Acta Mater, 2017, 128: 418 DOI: 10.1016/j.actamat.2017.02.021

    [63]

    Ko K H, Choi J O, Lee H. The interfacial restructuring to amorphous: A new adhesion mechanism of cold-sprayed coatings. Mater Lett, 2016, 175: 13 DOI: 10.1016/j.matlet.2016.03.132

    [64]

    Rafaja D, Schucknecht T, Klemm V, et al. Microstructural characterisation of titanium coatings deposited using cold gas spraying on Al2O3 substrates. Surf Coat Technol, 2009, 203(20-21): 3206 DOI: 10.1016/j.surfcoat.2009.03.054

    [65]

    Wu J W, Fang H Y, Yoon S, et al. The rebound phenomenon in kinetic spraying deposition. Scri Mater, 2006, 54(4): 665 DOI: 10.1016/j.scriptamat.2005.10.028

    [66]

    Klinkov S V, Kosarev V F, Rein M. Cold spray deposition: Significance of particle impact phenomena. Aerosp Sci Technol, 2005, 9(7): 582 DOI: 10.1016/j.ast.2005.03.005

    [67]

    Imbriglio S I, Hassani-Gangaraj M, Veysset D, et al. Adhesion strength of titanium particles to alumina substrates: A combined cold spray and LIPIT study. Surf Coat Technol, 2019, 361: 403 DOI: 10.1016/j.surfcoat.2019.01.071

    [68]

    Qin J H, Huang Q, Wang X, et al. Interfacial metal/ceramic bonding mechanism for metallization of ceramics via cold spraying. J Mater Process Technol, 2021, 288: 116845 DOI: 10.1016/j.jmatprotec.2020.116845

    [69]

    Drehmann R, Grund T, Lampke T, et al. Splat formation and adhesion mechanisms of cold gas-sprayed Al coatings on Al2O3 substrates. J Therm Spray Technol, 2013, 23(1-2): 68

    [70]

    Drehmann R, Grund T, Lampke T, et al. Interface characterization and bonding mechanisms of cold gas-sprayed Al coatings on ceramic substrates. J Therm Spray Technol, 2014, 24(1-2): 92

    [71]

    Drehmann R, Grund T, Lampke T, et al. Essential factors influencing the bonding strength of cold-sprayed aluminum coatings on ceramic substrates. J Therm Spray Technol, 2018, 27(3): 446 DOI: 10.1007/s11666-018-0688-0

    [72]

    Kromer R, Danlos Y, Costil S. Cold gas-sprayed deposition of metallic coatings onto ceramic substrates using laser surface texturing pre-treatment. J Therm Spray Technol, 2018, 27(5): 809 DOI: 10.1007/s11666-018-0718-y

    [73]

    Imbriglio S I, Brodusch N, Aghasibeig M, et al. Influence of substrate characteristics on single Ti splat bonding to ceramic substrates by cold spray. J Therm Spray Technol, 2018, 27(6): 1011 DOI: 10.1007/s11666-018-0743-x

    [74]

    King P C, Zahiri S H, Jahedi M, et al. Cold spray electroding of piezoelectric ceramic. Mater Forum, 2007, 31: 116

    [75]

    King P C, Zahiri S H, Jahedi M, et al. Aluminium coating of lead zirconate titanate — a study of cold spray variables. Surf Coat Technol, 2010, 205(7): 2016 DOI: 10.1016/j.surfcoat.2010.08.084

    [76]

    King P C, Zahiri S H, Jahedi M. Focused ion beam micro-dissection of cold-sprayed particles. Acta Mater, 2008, 56(19): 5617 DOI: 10.1016/j.actamat.2008.07.034

    [77]

    Xiong Y M, Kang K, Bae G, et al. Dynamic amorphization and recrystallization of metals in kinetic spray process. Appl Phys Lett, 2008, 92(19): 194101 DOI: 10.1063/1.2928218

    [78]

    Xiong Y M, Xiong X, Yoon S, et al. Dependence of bonding mechanisms of cold sprayed coatings on strain-rate-induced non-equilibrium phase transformation. J Therm Spray Technol, 2011, 20(4): 860 DOI: 10.1007/s11666-011-9634-0

    [79]

    Kosarev V F, Klinkov S V, Melamed B M, et al. Cold spraying for power electronics: Deposition of thick topologically patterned copper layers on ceramics // International Conference on the Methods of Aerophysical Research. Novosibirsk, 2018: 030047-1

  • 期刊类型引用(1)

    1. 郭宝群,付铁,李阳,孙刚,张政. 基于陶瓷颗粒-高锰钢基复合材料风扇磨煤机打击板的制备与性能测试. 精细化工中间体. 2025(01): 42-47 . 百度学术

    其他类型引用(0)

图(10)  /  表(1)
计量
  • 文章访问数:  1626
  • HTML全文浏览量:  208
  • PDF下载量:  115
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-04-08
  • 录用日期:  2021-06-03
  • 网络出版日期:  2021-06-06
  • 刊出日期:  2022-04-25

目录

/

返回文章
返回