高级检索

脉冲激光切丝工艺制备球形钼粉

王世泽, 赵兴科, 赵增磊, 吴平

王世泽, 赵兴科, 赵增磊, 吴平. 脉冲激光切丝工艺制备球形钼粉[J]. 粉末冶金技术, 2022, 40(3): 232-238. DOI: 10.19591/j.cnki.cn11-1974/tf.2021050009
引用本文: 王世泽, 赵兴科, 赵增磊, 吴平. 脉冲激光切丝工艺制备球形钼粉[J]. 粉末冶金技术, 2022, 40(3): 232-238. DOI: 10.19591/j.cnki.cn11-1974/tf.2021050009
WANG Shi-ze, ZHAO Xing-ke, ZHAO Zeng-lei, WU Ping. Spherical molybdenum powders prepared by pulse laser wire cutting[J]. Powder Metallurgy Technology, 2022, 40(3): 232-238. DOI: 10.19591/j.cnki.cn11-1974/tf.2021050009
Citation: WANG Shi-ze, ZHAO Xing-ke, ZHAO Zeng-lei, WU Ping. Spherical molybdenum powders prepared by pulse laser wire cutting[J]. Powder Metallurgy Technology, 2022, 40(3): 232-238. DOI: 10.19591/j.cnki.cn11-1974/tf.2021050009

脉冲激光切丝工艺制备球形钼粉

详细信息
    通讯作者:

    赵兴科: E-mail: xkzhao@ustb.edu.cn

  • 中图分类号: TF123.1,TG146.4

Spherical molybdenum powders prepared by pulse laser wire cutting

More Information
  • 摘要: 为了获得高性能的实心球形颗粒钼粉原料,采用脉冲激光切丝法制备球形钼粉。通过筛分、光学显微镜和扫描电子显微镜等研究了所制备钼粉的粒度、形貌、微观组织等物理性能。结果表明,脉冲激光切丝法制备的钼粉形貌呈球形或近球形,表面光滑,没有卫星颗粒或颗粒粘接聚集现象。在试验工艺参数范围内,90%以上的钼粉颗粒粒径在150 µm以上,其中粒径在150~300 µm范围的颗粒占比最大,超过60%。粒径400 µm以下的钼粉通常是内部致密的,而在一些粒径较大的钼粉颗粒中出现内部孔洞,并初步分析了钼粉颗粒及其内部孔洞的形成机制。
    Abstract: To obtain the high performance solid spherical molybdenum powder raw materials, the spherical molybdenum powders were prepared by the pulse laser wire cutting. The particle size, morphology, microstructure, and other physical properties of the molybdenum powders were studied by sieving, optical microscope, and scanning electron microscope, respectively. The results show that the morphology of molybdenum powders prepared by the pulse laser wire cutting is spherical or nearly spherical, and the surface is smooth without the satellite particles or particle aggregation. In the range of the experimental process parameters, more than 90% molybdenum powder particles are over 150 µm in size, and the particles in the range of 150~300 µm account for the largest proportion, more than 60%. Molybdenum particles with the particle size less than 400 µm are usually internally dense, while the internal holes appear in some larger particles. The formation mechanism of molybdenum particles and internal holes is preliminarily analyzed.
  • 图  1   激光切丝法制造金属粉末试验装置示意图

    Figure  1.   Schematic diagram of the test device for the manufacturing metal powders by laser wire cutting

    图  2   粉末粒度分布随峰值电流的变化关系

    Figure  2.   Relationship between the particle sizes distribution of molybdenum powders and the peak currents

    图  3   粉末粒度随脉冲频率的变化关系

    Figure  3.   Relationship between the particle sizes distribution of molybdenum powders and the pulse frequency

    图  4   钼粉颗粒的典型形貌

    Figure  4.   Typical morphology of the molybdenum powder particles

    图  6   钼粉颗粒的两种外表面形态

    Figure  6.   Two kinds of morphologies of molybdenum powder particles

    图  7   不同粒度钼粉颗粒的截面形貌:(a)<150 µm;(b)>600 µm

    Figure  7.   Cross-sectional morphology of the molybdenum powder particles with the different particle sizes: (a) <150 µm; (b) >600 µm

    图  8   孔洞颗粒占比与钼粉颗粒度的关系

    Figure  8.   Relationship between the particle sizes of molybdenum powders and the pore distribution

    图  9   分布于晶界处的凝固收缩孔洞

    Figure  9.   Solidification shrinkage pores at the grain boundary

    表  1   激光切丝试验工艺参数

    Table  1   Laser wire-cutting processing parameters

    基本工艺峰值电流 / A脉冲频率 / Hz
    峰值电流220 A、激光频率16 Hz,
    脉冲宽度3 ms,送丝速度12.5 mm·s−1
    100、120、140、180、220、26010、13、16、19
    下载: 导出CSV

    表  2   不同峰值电流下制备钼粉颗粒粒度分布

    Table  2   Particle size distribution of the molybdenum powders obtained at various peak electric currents %

    筛网 / 目粉末粒度 / µm峰值电流 / A
    100120140180220260
    +30>60016.400000
    −30~+40450~60034.524.010.80.34.15.2
    −40~+60300~45047.632.123.728.714.921.4
    −60~+100150~3001.539.460.961.167.563.0
    −100<15004.54.59.913.510.4
    下载: 导出CSV

    表  3   不同脉冲频率下制备钼粉颗粒粒度分布

    Table  3   Particle sizes distribution of the molybdenum powders obtained at various pulse frequencies %

    筛网 / 目粉末粒度/ µm脉冲频率 / Hz
    10131619
    +30>6000001.7
    −30~+40450~6000.37.14.112.2
    −40~+60300~45028.717.114.916.9
    −60~+100150~30061.171.767.561.3
    −100<1509.94.113.57.9
    下载: 导出CSV
  • [1] 冯鹏发, 孙军. 钼及钼合金粉末冶金技术研究现状与发展. 中国钼业, 2010, 34(3): 39 DOI: 10.3969/j.issn.1006-2602.2010.03.009

    Feng P F, Sun J. Progress and prospect of research and application of powder metallurgy processes of Mo and Its alloys. China Molybd Ind, 2010, 34(3): 39 DOI: 10.3969/j.issn.1006-2602.2010.03.009

    [2] 董帝, 王承阳. 钼合金制备工艺的研究进展. 粉末冶金技术, 2017, 35(4): 304

    Dong D, Wang C Y. Research progress on preparation technology of molybdenum alloy. Powder Metall Technol, 2017, 35(4): 304

    [3] 张宇晴, 王芦燕, 李曹兵. 等离子球化钼粉3D打印工艺适配性研究. 热喷涂技术, 2020, 12(2): 69

    Zhang Y Q, Wang L Y, Li C B. Study on suitability between technological parameters of 3D printing and molybdenum powder by plasma spheroidizing. Therm Spray Technol, 2020, 12(2): 69

    [4] 武洲, 卜春阳, 李晶. 气流磨处理对钼粉物理性能的影响. 稀有金属材料与工程, 2010, 39(增刊1): 451

    Wu Z, Bu C Y, Li J. Effect of jet milling processing on the physical properties of molybdenum powder. Rare Met Mater Eng, 2010, 39(Suppl 1): 451

    [5] 庄飞, 杨秦莉, 赵虎, 等. 球形钼粉物性指标的影响因素分析. 铸造技术, 2013, 34(8): 977

    Zhuang F, Yang Q L, Zhao H, et al. Analysis of effect factors on properties of spherical molybdenum powder. Foundry Technol, 2013, 34(8): 977

    [6] 席莎, 曹维成, 张晓, 等. 钼粉粒径对钼坩埚组织性能的影响. 中国钼业, 2017, 41(1): 42

    Xi S, Cao W C, Zhang X, et al. The effect of molybdenum powder particle size on the properties of molybdenum crucible. China Molybd Ind, 2017, 41(1): 42

    [7] 付静波, 庄飞, 张晓. 黏结剂含量对喷雾造粒钼粉形貌和物理性能的影响. 中国粉体技术, 2013, 19(4): 81 DOI: 10.3969/j.issn.1008-5548.2013.04.020

    Fu J B, Zhuang F, Zhang X. Effects of binder content on morphology and physical property of spray granulated molybdenum powders. China Powder Sci Technol, 2013, 19(4): 81 DOI: 10.3969/j.issn.1008-5548.2013.04.020

    [8] 赵盘巢, 易伟, 陈家林. 喷雾干燥结合微波煅烧氢还原法制备微米级球形钼粉. 稀有金属材料与工程, 2017, 46(10): 3123

    Zhao P C, Yi W, Chen J L. Preparation of spherical molybdenum powder by spray drying and microwave calcination hydrogen reduction. Rare Met Mater Eng, 2017, 46(10): 3123

    [9] 盛艳伟, 郭志猛, 郝俊杰, 等. 射频等离子体制备球形Mo粉的研究. 粉末冶金工业, 2011, 21(6): 6 DOI: 10.3969/j.issn.1006-6543.2011.06.002

    Sheng Y W, Guo Z M, Hao J J, et al. Characterization of spherical molybdenum powders prepared by RF plasma processing. Powder Metall Ind, 2011, 21(6): 6 DOI: 10.3969/j.issn.1006-6543.2011.06.002

    [10] 陈文波, 陈伦江, 刘川东, 等. 射频等离子体球化中钼粉颗粒加热过程的数值模拟. 稀有金属材料与工程, 2019, 48(3): 859

    Chen W B, Chen L J, Liu C D, et al. Numerical simulation of heating process of molybdenum powder in radio frequency plasma spheroidization. Rare Met Mater Eng, 2019, 48(3): 859

    [11] 叶凯, 梁风, 姚耀春, 等. 热等离子体制备与球化超细难熔金属粉的研究进展. 中国有色金属学报, 2020, 30(9): 2011 DOI: 10.11817/j.ysxb.1004.0609.2020-37618

    Ye K, Liang F, Yao Y C, et al. Research progress of preparing and spheroidizing ultrafine refractory metal powder by thermal plasma. Chin J Nonferrous Met, 2020, 30(9): 2011 DOI: 10.11817/j.ysxb.1004.0609.2020-37618

    [12] 陈强, 冯鹏发, 武洲, 等. 热等离子法制备高致密球形钼粉颗粒. 中国粉体技术, 2013, 19(1): 42 DOI: 10.3969/j.issn.1008-5548.2013.01.010

    Chen Q, Feng P F, Wu Z, et al. Preparation of high density spherical molybdenum particles using thermal plasma method. China Powder Sci Technol, 2013, 19(1): 42 DOI: 10.3969/j.issn.1008-5548.2013.01.010

    [13] 付静波, 张晓, 庄飞. 松比大、纯度高、球形团聚钼粉制备工艺研究. 粉末冶金工业, 2013, 23(5): 8 DOI: 10.3969/j.issn.1006-6543.2013.05.002

    Fu J B, Zhang X, Zhuang F. Research on agglomerated spherical molybdenum powder with high apparent density and high purity. Powder Metall Ind, 2013, 23(5): 8 DOI: 10.3969/j.issn.1006-6543.2013.05.002

    [14]

    Liu X P, Wang K S, Hu P, et al. Spheroidization of molybdenum powder by radio frequency thermal plasma. Int J Miner Metall Mater, 2015, 22(11): 1212 DOI: 10.1007/s12613-015-1187-7

    [15]

    Hao Z H, Fu Z H, Liu J T, et al. Spheroidization of a granulated molybdenum powder by radio frequency inductively coupled plasma. Int J Refract Met Hard Mater, 2019, 82: 15 DOI: 10.1016/j.ijrmhm.2019.03.023

    [16] 刘晓平, 王快社, 胡平, 等. 感应等离子体工艺对制备致密球形钼粉的影响. 金属热处理, 2015, 40(10): 76

    Liu X P, Wang K S, Hu P, et al. Effect of induction plasma process on preparation of dense spherical molybdenum powder. Heat Treat Met, 2015, 40(10): 76

    [17] 史振琦, 黄晓玲, 刘涛. 钼粉团聚体对钼圆片组织的影响. 中国钼业, 2018, 42(4): 53

    Shi Z Q, Huang X L, Liu T. The effect of molybdenum powder agglomeration on microstructure of molybdenum disc. China Molybd Ind, 2018, 42(4): 53

    [18] 刘仁智, 安耿, 李晶, 等. 不同粒度钼粉对板材组织的影响. 中国钼业, 2010, 34(5): 52 DOI: 10.3969/j.issn.1006-2602.2010.05.012

    Liu R Z, An G, Li J, et al. Influence of molybdenum powder with different grain sizes on plates structure. China Molybd Ind, 2010, 34(5): 52 DOI: 10.3969/j.issn.1006-2602.2010.05.012

    [19] 罗锋, 刘俊怀, 马会. 低钾大粒度钼粉降本增效工艺研究. 中国钼业, 2014, 38(3): 47

    Luo F, Liu J H, Ma H. Study on technology of low-potassium large-grained molybdenum powder production for cost decreasing and benefit increasing. China Molybd Ind, 2014, 38(3): 47

    [20] 金园园, 贺卫卫, 陈斌科, 等. 球形难熔金属粉末的制备技术. 航空制造技术, 2019, 62(22): 64

    Jin Y Y, He W W, Chen B K, et al. Preparation of spherical refractory metal powders. Aeronaut Manuf Technol, 2019, 62(22): 64

    [21]

    de Souza J, Oliveira-Motta C A, Machado T G, et al. Analysis of metallic waste from laser cutting for utilization in parts manufactured by conventional powder metallurgy. Int J Res Eng Sci, 2016, 4(11): 1

    [22]

    Abbasov V, Zeynalov E, Abdullayeva N. Comparative catalytic activity of metal-containing catalysts of different nature in the liquid-phase aerobic oxidation of ethylbenzene. Open Mater Sci J, 2014, 8(1): 27 DOI: 10.2174/1874088X01408010027

    [23] 徐志昌, 张萍. 喷雾法制备活塞环用MP43喷镀合金钼粉. 中国钼业, 2005, 29(6): 36 DOI: 10.3969/j.issn.1006-2602.2005.06.010

    Xu Z C, Zhang P. The preparation of spraying alloy molybdenum powder by spray method. China Molybd Ind, 2005, 29(6): 36 DOI: 10.3969/j.issn.1006-2602.2005.06.010

    [24] 张晓, 付静波, 庄飞. 热处理对喷雾干燥钼粉的影响. 中国钼业, 2015, 39(4): 50

    Zhang X, Fu J B, Zhuang F. Effect of heat treatment on spray dried Mo powder. China Molybd Ind, 2015, 39(4): 50

    [25] 李少龙, 苏国平. 喷镀钼粉流动性的提高途径. 中国钼业, 2003, 27(2): 39 DOI: 10.3969/j.issn.1006-2602.2003.02.011

    Li S L, Su G P. Method of improving fluidity of spraying molybdenum powder. China Molybd Ind, 2003, 27(2): 39 DOI: 10.3969/j.issn.1006-2602.2003.02.011

  • 期刊类型引用(3)

    1. 张炜,萧伟健,袁传牛,张宁,陈荣昕. 基于三维离散元模型粉末压制中力链对阻塞行为的影响机制. 粉末冶金技术. 2024(04): 403-410+417 . 本站查看
    2. 李化蓥,刘军,张超,张璐栋,王海陆,柯建忠. 基于离散元锥形零件冲击加载的相对密度. 粉末冶金技术. 2023(04): 322-329 . 本站查看
    3. 张小粉,白瑀,李磊. 基于MARC的FC0205铁基粉末压制模拟技术. 粉末冶金工业. 2023(05): 81-88 . 百度学术

    其他类型引用(0)

图(9)  /  表(3)
计量
  • 文章访问数:  822
  • HTML全文浏览量:  330
  • PDF下载量:  124
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-05-25
  • 录用日期:  2021-05-25
  • 网络出版日期:  2021-07-04
  • 刊出日期:  2022-06-27

目录

    /

    返回文章
    返回