高级检索

计算机仿真在粉末冶金过程的应用及研究进展

李静

李静. 计算机仿真在粉末冶金过程的应用及研究进展[J]. 粉末冶金技术, 2021, 39(4): 366-372. DOI: 10.19591/j.cnki.cn11-1974/tf.2021060001
引用本文: 李静. 计算机仿真在粉末冶金过程的应用及研究进展[J]. 粉末冶金技术, 2021, 39(4): 366-372. DOI: 10.19591/j.cnki.cn11-1974/tf.2021060001
LI Jing. Application and research progress of computer simulation used in powder metallurgy process[J]. Powder Metallurgy Technology, 2021, 39(4): 366-372. DOI: 10.19591/j.cnki.cn11-1974/tf.2021060001
Citation: LI Jing. Application and research progress of computer simulation used in powder metallurgy process[J]. Powder Metallurgy Technology, 2021, 39(4): 366-372. DOI: 10.19591/j.cnki.cn11-1974/tf.2021060001

计算机仿真在粉末冶金过程的应用及研究进展

详细信息
    通讯作者:

    李静: E-mail:54045973@qq.com

  • 中图分类号: TF122

Application and research progress of computer simulation used in powder metallurgy process

More Information
  • 摘要: 随着综合性能优秀、形状复杂的粉末冶金零部件的量产化,为了更大程度的降低成本、提高质量、缩短开发周期,计算机仿真技术在粉末冶金领域的应用越来越广泛。本文介绍了目前在粉末冶金领域应用较多的几种仿真软件Abaqus、Deform、Ansys、Comsol、MSC.Marc,列举了几种软件的实际应用,比较了几种仿真软件的优缺点,提出了在实际生产实践中仿真软件的选择标准,并对今后计算机仿真软件在粉末冶金领域的发展提出了建议和展望。
    Abstract: With the quantity production of the powder metallurgy parts with the excellent comprehensive performance and complex shape, the computer simulation technology is widely used in powder metallurgy process to reduce the product cost, improve product quality, and shorten the development cycle. Several simulation software (Abaqus, Deform, Ansys, Comsol, and MSC.Marc) were introduced in this paper, which are widely used in powder metallurgy field at present. The advantages and disadvantages of the simulation software were compared. The application and selection for the simulation software in the actual production practice were also discussed. The expectation and development of the computer simulation software in powder metallurgy field in the future were put forward.
  • 图  1   主雾化熔体液滴分布图[7]

    Figure  1.   Gas-melt interaction in primary atomization[7]

    图  2   二次雾化TAB模型粒度分布图[7]

    Figure  2.   Diameter distribution simulated by TAB model in secondary atomization[7]

    图  3   三维有限元模型(a)和粉末最小网格(b)[8]

    Figure  3.   Three dimensional finite element model (a) and the minimum mesh of powders (b)[8]

    图  4   断层扫描仪获得若干幅多孔材料二维断面图(a)和商业图像处理软件构建的烧结钛的三维多孔结构(b)[10]

    Figure  4.   Cross-sectional images obtained using the computed tomography (a) and the three-dimensional porous structure of the sintered Ti measured by the computed tomography (b)[10]

    图  5   采用立方体单胞模型(a)和基于断层扫描模型(b)的有限元模拟等效应力分布[10]

    Figure  5.   Equivalentstress distribution by finite element modelling based on the unit-cell model (a) and the CT model (b)[10]

    图  6   利用Deform–3D建立的纯钼锻造过程三维模型[11]

    Figure  6.   3D model of the pure molybdenum forging process by Deform–3D[11]

    图  7   三种不同初始坯料连杆最终成形[12]:(a)初始坯料1;(b)初始坯料2;(c)优化后的坯料

    Figure  7.   Final forming of the connecting rods with different initial billets[12]: (a) the initial billet 1; (b) the initial billet 2; (c) the optimized billet

    图  8   平衡器三维仿真模型中相对密度分布[18]:(a)顶部;(b)底部

    Figure  8.   Relative density distributions of the 3D simulation model for balancer[18]: (a) the top; (b) the bottom

  • [1] 黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004

    Huang P Y. Theory of Powder Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004

    [2] 彭景光, 李德凯, 陈迪, 等. 有限元分析在铁基粉末冶金中的应用比较. 粉末冶金技术, 2016, 34(6): 461 DOI: 10.3969/j.issn.1001-3784.2016.06.012

    Peng J G, Li D K, Chen D, et al. Comparison the characteristics of the finite element analysis software by the application in iron-based powder metallurgy industry. Powder Metall Technol, 2016, 34(6): 461 DOI: 10.3969/j.issn.1001-3784.2016.06.012

    [3] 曲选辉. 主编寄语. 粉末冶金技术, 2021, 39(1): 3

    Qu X H. Comments of Editor-in-Chief. Powder Metall Technol, 2021, 39(1): 3

    [4] 蒋煜. 粉末冶金过程的计算机仿真[学位论文]. 兰州: 兰州理工大学, 2019

    Jiang Y. Computer Simulation of Powder Metallurgy Process [Dissertation]. Lanzhou: Lanzhou University of Technology, 2019

    [5] 马长勇. 真空感应熔炼电磁场的数值模拟[学位论文]. 沈阳: 东北大学, 2013

    Ma C Y. Numerical Simulation of Electromagnetic Field in Vacuum Induction Melting [Dissertation]. Shenyang: Northeastern University, 2013

    [6] 欧阳鸿武, 王琼, 刘卓民. 紧耦合气雾化流场结构突变过程的数值模拟. 粉末冶金材料科学与工程, 2010, 15(2): 96 DOI: 10.3969/j.issn.1673-0224.2010.02.002

    Ouyang H W, Wang Q, Liu Z M. Numerical study on abrupt change of flow field in close-coupled gas atomization. Mater Sci Eng Powder Metall, 2010, 15(2): 96 DOI: 10.3969/j.issn.1673-0224.2010.02.002

    [7] 夏敏, 汪鹏, 张晓虎, 等. 电极感应熔化气雾化制粉技术中非限制式喷嘴雾化过程模拟. 物理学报, 2018, 67(17): 41

    Xia M, Wang P, Zhang X H, et al. Computational fluid dynamic investigation of the primary and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process. Acta Phys Sin, 2018, 67(17): 41

    [8]

    Zhou R, Zhang L H, He B Y, et al. Numerical simulation of residual stress field in green power metallurgy compacts by modified Drucker-Prager Cap model. Trans Nonferrous Met Soc China, 2013, 23(8): 2374 DOI: 10.1016/S1003-6326(13)62744-2

    [9] 邓正华, 尹海清, 李万全, 等. 基于逆向设计思想的低速重载轴承用铜基粉末合金的设计. 粉末冶金技术, 2020, 38(2): 83

    Deng Z H, Yin H Q, Li W Q, et al. Design of Cu-based powder alloys used for low speed and heavy bearing with inverse design methodology. Powder Metall Technol, 2020, 38(2): 83

    [10]

    Lee D J, Jung J M, Latypov M I, et al. Three-dimensional real structure-based finite element analysis of mechanical behavior for porous titanium manufactured by a space holder method. Comput Mater Sci, 2015, 100: 2 DOI: 10.1016/j.commatsci.2014.10.020

    [11] 杨栋林, 段柏华, 王德志. 纯钼的多向锻造数值模拟及实验研究. 粉末冶金技术, 2021, 39(3): 216

    Yang D L, Duan B H, Wang D Z. Numerical simulation and experimental investigation on multi-directional forging of pure molybdenum. Powder Metall Technol, 2021, 39(3): 216

    [12] 杨兆伟, 郭顺生, 孙康岭. DEFORM–3D仿真软件在连杆锻造过程中的应用. 现代制造工程, 2010, 4(8): 93 DOI: 10.3969/j.issn.1671-3133.2010.08.024

    Yang Z W, Guo S S, Sun K L. An application for forging of connecting rod based on DEFORM–3D. Mod Manuf Eng, 2010, 4(8): 93 DOI: 10.3969/j.issn.1671-3133.2010.08.024

    [13] 尤萌萌, 潘诗琰, 申小平, 等. 粉末压制过程数值模拟的研究现状及展望. 粉末冶金工业, 2017, 27(4): 49

    You M M, Pan S Y, Shen X P, et al. Current progress and prospect of numerical simulation in powder compaction. Powder Metall Ind, 2017, 27(4): 49

    [14] 毛华杰, 沈小燕. 粉末冶金件表面滚压塑性变形强化过程的数值模拟. 热加工工艺, 2020, 39(11): 110

    Mao H J, Shen X Y. Numerical simulation of powder metallurgy components strengthened by surface rolling. Hot Working Technol, 2020, 39(11): 110

    [15] 张京. 硬质合金刀片压坯密度分布与烧结变形的研究[学位论文]. 长沙: 中南大学, 2014

    Zhang J. Study on the Compact Density and Sintering Deformation of Carbide Inserts [Dissertation]. Changsha: Central South University, 2014

    [16] 郎利辉, 王刚, 布国亮, 等. 钛合金粉末热等静压数值模拟及性能研究. 粉末冶金工业, 2015, 25(3): 1

    Lang L H, Wang G, Bu G L, et al. Study of numerical simulation and mechanical properties of hot isostatic pressed titanium alloy powder. Powder Metall Ind, 2015, 25(3): 1

    [17] 喻思, 郎利辉, 王刚, 等. 热等静压成形2A12铝合金粉末的数值模拟研究. 粉末冶金工业, 2016, 26(2): 17

    Yu S, Lang L H, Wang G, et al. Research on numerical simulation of 2A12 aluminum alloy manufactured by hot isostatic pressing. Powder Metall Ind, 2016, 26(2): 17

    [18]

    Song Y, Li Y Y, Zhou Z Y, et al. Improved model and 3D simulation of densification process for iron powder. Trans Nonferrous Met Soc China, 2010, 20(8): 1470 DOI: 10.1016/S1003-6326(09)60323-X

    [19] 谭树林, 张晓敏, 赵志鹏, 等. 电流辅助烧结过程的多物理场耦合体系模拟. 粉末冶金技术, 2020, 38(6): 414

    Tan S L, Zhang X M, Zhao Z P, et al. System simulation of multi-physical field coupling in electric current-assisted sintering. Powder Metall Technol, 2020, 38(6): 414

    [20] 王东, 杨溢. 大型离散元软件EDEM的功能特点. 科技成果纵横, 2009, 4(3): 75 DOI: 10.3969/j.issn.1005-5096.2009.03.034

    Wang D, Yang Y. Functional characteristics of large-scalediscrete element software EDEM. Perspect Sci Technol Achiev, 2009, 4(3): 75 DOI: 10.3969/j.issn.1005-5096.2009.03.034

    [21] 张辉, 张永震. 颗粒力学仿真软件EDEM简要介绍. CAD/CAM与制造业信息化, 2008, 4(12): 48

    Zhang H, Zhang Y Z. Brief introduction of particle mechanics simulation software EDEM. CAD/CAM Manuf Inform, 2008, 4(12): 48

    [22] 赵艳波, 马麟, 刘波, 等. 基于离散元法的纯铁粉振动填充密度分析. 粉末冶金技术, 2020, 38(6): 429

    Zhao Y B, Ma L, Liu Bo, et al. Analysis on vibration packing density of pure iron powders based on discrete element method. Powder Metall Technol, 2020, 38(6): 429

    [23] 刘义伦, 曾洋. 不同成型工艺下钕铁硼模压成型过程的力学行为分析. 粉末冶金技术, 2020, 38(4): 262

    Liu Y L, Zeng Y. Mechanical behavior analysis on the compression molding process of NdFeB by different molding technology. Powder Metall Technol, 2020, 38(4): 262

图(8)
计量
  • 文章访问数:  835
  • HTML全文浏览量:  1149
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 网络出版日期:  2021-07-14
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回