Research progress on FeCrAl alloys used for nuclear fuel cladding prepared by powder metallurgy
-
摘要: 燃料包壳是核反应堆安全运行的重要保障。福岛核事故后,国内外开展了大量新型事故容错燃料包壳的研发工作。由于具有抗高温氧化和高强度等优异的综合性能,FeCrAl合金已成为新一代事故容错燃料包壳的重要候选材料之一。经过多年积累,核燃料包壳FeCrAl合金的设计和制备研究已取得一定进展。利用粉末冶金方法制备性能更为优异的氧化物弥散强化FeCrAl合金前景广阔,受到国内外学者的广泛关注。本文综述了核燃料包壳FeCrAl合金的成分设计、熔炼制备和粉末冶金制备的研究现状,分析了不同方法制备合金的组织性能及存在的问题,对未来核燃料包壳FeCrAl合金的设计和制备进行了展望。Abstract: The fuel cladding plays an important role for the safe operation of the nuclear reactors. After the Fukushima nuclear accident, a large number of new types of the accident-tolerant fuel cladding have been developed. FeCrAl alloys have become one of the important candidate materials for the new generation of the accident-tolerant fuel cladding due to the excellent comprehensive properties, such as the high temperature oxidation resistance and the high strength. After years of research and development, some progress has been made in the design and preparation of FeCrAl alloys used for the nuclear fuel cladding. As one of the main research directions, the preparation of the oxide dispersion strengthened FeCrAl alloys with the better performance by powder metallurgy shows a broad prospect and has attracted the extensive attention from scholars at home and abroad. In this paper, the research status of the composition design, smelting, and powder metallurgy for the FeCrAl alloys used for the nuclear fuel cladding were reviewed. The microstructure, properties, and the existing problems of the FeCrAl alloys prepared by the different methods were analyzed. The future design and preparation of the FeCrAl alloys used for the nuclear fuel cladding were prospected.
-
Keywords:
- nuclear fuel cladding /
- FeCrAl alloys /
- composition design /
- melting /
- powder metallurgy
-
硬质合金是以难熔金属碳化物(WC、TiC、TaC等)为硬质相,以过渡金属元素(Co、Ni、Fe等)为粘结相,采用粉末冶金方法制备的复合材料[1‒2]。硬质合金具有高强度、高硬度、高弹性模量、高耐磨损、高耐腐蚀、低热膨胀系数以及高化学稳定性等优点,被广泛地应用于拉丝模具、机械加工、耐磨耐腐蚀零件以及结构部件等领域,被誉为“工业的牙齿”[3‒6]。
自1923年发展至今,硬质合金的材料体系、WC晶粒尺寸、微观结构类型不断得到丰富与发展[7‒9]。均匀结构硬质合金是指内部微观结构均匀一致,具有相同成分、组织及性能的硬质合金[10]。根据WC晶粒大小,均匀结构硬质合金可分为纳米及超细晶硬质合金、超粗晶硬质合金和双晶硬质合金等[11‒18]。均匀结构硬质合金由陶瓷硬质相和金属粘结相组成,陶瓷硬质相的比例提高有助于硬度和耐磨性的改善,但会造成韧性的降低;反之,当金属粘结相的比例提高时,会出现相反的力学性能变化规律。均匀结构硬质合金存在无法同时提高耐磨性和断裂韧性的局限性。表面改性在硬质合金表层空间尺度上实现微观组织的变化,进而对表面力学性能进行优化调控,最终提高硬质合金工具的使用寿命,满足工业应用不断发展的现状。目前主要通过化学表面改性和物理表面改性获得具有实际工程应用价值的非均匀结构硬质合金。近年来,通过渗碳、脱碳、渗氮或脱氮处理等化学表面改性制备梯度硬质合金或通过物理气相沉积和化学气相沉积等物理表面改性制备涂层硬质合金已成为非均匀结构硬质合金的研究热点。基于物理气相沉积或化学气相沉积涂层方法的多层复合涂层硬质合金已实现大规模商业化应用。
本文针对目前传统均匀结构硬质合金耐磨性和断裂韧性难以同时提升的问题提出改进措施,介绍了不同表面改性处理得到非均匀结构硬质合金的制备机理与研究现状,并对今后的研究方向提出了展望。
1. 化学表面改性
随着硬质合金制备技术的发展,非均匀结构硬质合金的制备方法不断丰富,其中表面改性是制备非均匀结构硬质合金的主要方法。化学表面改性是通过原子扩散、液体流动、化学反应等方法实现硬质合金表面物相及微观组织的改变,进而完成合金表面力学性能的定向改善[19‒20]。目前通过化学表面改性制备的常见梯度硬质合金如表1所示。
表 1 基于化学表面改性的常见梯度硬质合金Table 1. Graded cemented carbides based on the chemical surface modification化学表面
改性方法材料体系特点 梯度结构特征 渗碳处理 缺碳 表层贫Co,芯部含η相 正常碳的质量分数 表层贫Co,芯部不含η相 脱碳处理 碳的质量分数偏高 表层富Co 渗氮处理 含Ti、Ta、Nb等元素 表层富含立方相 脱氮处理 含N元素 表层富Co,无立方相 渗碳或脱碳处理实现梯度结构是基于碳的扩散及碳的质量分数对硬质合金微观组织的影响。如WC–Co合金中只出现WC与Co两相,正常碳的质量分数应分布在富碳上限和缺碳下限之间[21],其中富碳上限为(6.13+0.058×Co质量分数)%,缺碳下限为(6.13‒0.079×Co质量分数)%。当合金中的碳质量分数高于富碳上限时,就会出现游离C,也就是石墨相;当合金中的碳质量分数低于缺碳下限时,就会出现η相[21‒22]。渗氮或脱氮是基于氮的扩散和氮、钛及碳之间的化学反应。氮的扩散实现硬质合金表面物相和微观组织的变化,进而促进梯度结构的形成[19,23]。
1.1 渗碳处理——表层贫Co且芯部含η相梯度结构
表层贫Co且芯部含η相梯度结构的形成机理分析如下[24–27]:通过预烧结制备含η相硬质合金,然后进行渗碳液相烧结,渗入合金表面的C原子与表面η相发生反应,生成WC与Co。随着C原子由表及里的迁移,C原子由外向内与η相反应,这种反应导致η相降低甚至消失,Co相增加。C原子浓度在液相Co中呈现出外高内低的梯度,C原子浓度梯度驱动分解出来的W原子往外表层迁移,并且会与液相Co中的C原子反应生成WC。由W原子往外迁移而引起的体积缺陷也会驱动外表层中的液相Co由表及里迁移,因而导致过渡层的Co含量(质量分数)偏高,进而引起过渡层WC晶粒粗化。
表层贫Co且芯部含η相梯度结构示意图如图1所示[27],可分为贫Co表层、富Co过渡层和含η相芯部。该梯度硬质合金的Co含量(质量分数)与维氏硬度分布如图2所示[27]。由图可知,表层Co质量分数低于名义Co质量分数,因而表层硬度高;过渡层的Co质量分数高于名义Co质量分数,因而硬度低,韧性高;芯部含有η相,其Co质量分数是合金的名义Co质量分数。
1.2 渗碳处理——表层贫Co且芯部不含η相梯度结构
图3所示为WC–10Co硬质合金的W–Co–C相图[28]。关于表层贫Co且芯部不含η相梯度结构形成机理分析如下[28‒29]:当温度在1275~1325 ℃区间时,WC、固相Co和液相Co三相共存,在此温度范围内,当C质量分数在5.34%~5.65%范围内增加时,固相Co含量(质量分数)明显减少,而液相Co含量显著增加。因此,当低C含量且不含η相硬质合金在此温度下进行渗碳处理时,C原子逐渐渗入合金的表层,较高的C含量使合金表层首先出现液相Co,进而液相Co从合金表层向合金内部渗入,当保温一定时间,再冷却降温后,所有Co都会以固相Co的形式存在,最终出现表层贫Co的梯度硬质合金。该梯度结构特征如图4所示[28],由贫Co的表层和无η相的芯部组成。
1.3 脱碳处理——富Co表层梯度硬质合金
富Co表层梯度结构形成机理分析[30‒32]如下:从图3可以看出,液相Co含量(质量分数)会随着温度和C含量(质量分数)的变化而改变。脱碳处理即在低碳势的气氛下进行烧结,在1300 ℃以下进行脱碳,硬质合金表层的C含量将会率先降低,表层的Co优先从液相到固相发生转变,当液相Co开始凝固时,表层中溶解在液相Co中的C和W溶解度会下降,进而表层中的C和W向合金的内部迁移,最终形成表层富Co层,类似于一层Co覆盖在硬质合金的表层。脱碳处理得到的富Co表层梯度硬质合金如图5所示[28]。通过脱碳处理制备表层覆盖Co层的梯度硬质合金,对原始合金的C含量(质量分数)要求偏高,否则将会造成合金内部缺C。
1.4 渗氮处理——表层富含立方相梯度结构
表层富含立方相梯度结构形成机理如图6所示[19,33‒34]:渗氮促使烧结气氛中的N原子扩散到合金表面,N原子与合金表面的C、Ti原子反应生成Ti(C,N)。该反应促使合金内部区域的Ti原子从里往外迁移。合金次表层的Ti原子向外迁移留下空位,此空位需要其他原子予以填充。金属Co原子在硬质合金材料体系中的扩散系数高,尤其是液相烧结,部分Co相为液相,流动性最好,所以Co原子会定向迁移填充由Ti原子迁移所造成的原子空位。此时,合金的次表层Co含量增加,次表层Co的富集促进次表层WC晶粒通过溶解–析出机制长大粗化,所以次表层富Co且WC晶粒粗大。最终形成表层富立方相、次表层富Co且WC晶粒粗大的梯度结构硬质合金。
1.5 脱氮处理——表层富Co且无立方相梯度结构
表层富Co且无立方相梯度结构形成机理如图7所示[35‒36]:在无氮或贫氮的烧结气氛下,含氮硬质合金在液相烧结过程中合金表面的氮化物发生分解,即合金表面N原子向烧结气氛中扩散,进而造成合金表层的N原子含量降低。此时,合金内部N原子的浓度大于合金表面N原子的浓度,合金内部的N原子向合金表面扩散。由于N与Ti原子之间存在强烈的亲和力,当合金内部的N原子通过粘结相向合金表面扩散时,合金表面的Ti原子也会通过粘结相向内部扩散,同时液相Co会从合金内部流向表层去填补由TiN分解出现的空位,进而导致合金表层的Co含量增加。直至合金表层TiN几乎全部发生分解,进而形成表层富Co且无立方相梯度结构硬质合金。
目前,部分基于化学表面改性方法的结构功能一体化梯度硬质合金材料已实现商业化且制备机理已基本清晰。但在化学表面改性实现梯度结构过程中,关于化学扩散与热扩散原理还缺乏深入研究,需要深入分析原子的迁移驱动力、动力学方程,建立原子在化学势和温度梯度作用下的迁移模型。
2. 物理表面改性
物理表面改性是通过涂覆的方法在硬质合金表面制备单层或者多层复合涂层,从而赋予硬质合金特定的表面性能[37]。目前,涂层硬质合金主要通过物理气相沉积和化学气相沉积方法在材料表面涂覆高耐磨的难熔金属或非金属化合物[38]。
2.1 涂层方法分析
国内外研究人员对物理气相沉积和化学气相沉积涂层方法进行了广泛且深入的研究,结果表明两种方法分别具有不同优势[38‒41]。对于物理气相沉积,沉积温度低,涂层的沉积温度约200~500 ℃,一般对基体影响不大;对于化学气相沉积,由于沉积温度较高(850~1050 ℃),基体通常参与了薄膜成膜初期的化学反应。物理气相沉积涂层表面光滑,内部产生压应力,有助于抗裂纹扩展。对于化学气相沉积,涂层反应源的制备相对比较容易,涂层与基体结合强度高,涂层附着力强、均匀性好,适合用来给复杂形貌工件镀层。化学气相沉积涂层工业化成本低于物理气相沉积涂层。
2.2 涂层结构设计
由于单一涂层难以满足当前机加工对涂层硬质合金刀具的力学性能要求,涂层成分趋于多元化,涂层结构趋于复合化,涂层微观组织趋于纳米化[38,42]。从目前应用需求分析,机加工对涂层结构的功能性要求越来越高[42],复合功能涂层结构已取得广泛应用。
瑞典、美国等国家的著名刀具公司都开发有多层结构的涂层硬质合金刀具。如瑞典Sandvik Coromant公司的GC2015牌号刀具具有TiCN–TiN/Al2O3–TiN的三层结构复合涂层,TiCN底层与基体的结合强度高,TiN/Al2O3中间层既耐磨又能抑制裂纹的扩展,TiN表层具有较好的化学稳定性且易于观察刀具的磨损[43]。美国Kennametal Hertel公司的KC9315型刀片上共有三层涂层,底层是Al2O3,中间层是TiCN,表面层是TiN。这种多层复合涂层的性能较单层的TiC、TiN涂层及TiC/TiN双层涂层具有明显性能优势。多层复合涂层的功能分析如图8所示[42]。
物理表面改性方法解决了硬质合金刀具硬度与强度之间的矛盾,已经在数控车床刀具领域取得广泛应用。涂层的性能取决于材料的微观组织结构与化学成分,除了研究涂层材料、涂层制备技术、涂层工艺之外,还需要重点研究涂层材料与硬质合金材料之间化学成分和热膨胀系数的匹配关系。
3. 总结与展望
硬质合金的主要研究方向已经从均匀结构向非均匀结构转变。对于化学表面改性梯度硬质合金,在研究当前梯度硬质合金微观结构及形成机理的基础上,需要完善其热力学、动力学数据,从微观机制上完整解释梯度结构的形成过程,实现准确调控梯度结构形成的重要参数,为功能梯度硬质合金的制备提供更充分的基础理论指导。对于物理表面改性涂层硬质合金,当前研究主要是在均匀结构硬质合金基体上进行涂层结构复合化设计,对硬质合金基体的梯度结构设计在改善涂层与基体结合强度方面具有潜在技术优势,因此,需要对硬质合金基体的非均匀结构设计开展深入研究。
-
表 1 不同方法制备FeCrAl合金晶粒尺寸与拉伸性能
Table 1 Grain size and tensile properties of the FeCrAl alloy prepared by various methods
-
[1] Allison C M, Hohorst J K, Allison B S, et al. Preliminary assessment of the possible BWR core/vessel damage states for Fukushima Daiichi Station blackout scenarios using RELAP/SCDAPSIM. Sci Technol Nucl Install, 2012, 2012: 646327
[2] Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. J Nucl Mater, 2015, 467: 703 DOI: 10.1016/j.jnucmat.2015.10.019
[3] 高士鑫, 李文杰, 陈平, 等. FeCrAl包壳燃料棒辐照行为研究. 核动力工程, 2017, 38(5): 175 Gao S X, Li W J, Chen P, et al. Study on irradiation behavior of fuel rods with FeCrAl cladding. Nucl Power Eng, 2017, 38(5): 175
[4] 周军, 邱绍宇, 杜沛南, 等. 耐事故燃料包壳用FeCrAl不锈钢的研究进展. 材料导报, 2017, 31(增刊2): 47 Zhou J, Qiu S Y, Du P N, et al. Research progress in the FeCrAl alloys for accident tolerant fuel cladding. Mater Rev, 2017, 31(Suppl 2): 47
[5] 黄希, 李小燕, 方晓东, 等. 容错事故燃料包壳用FeCrAl合金的研究进展. 材料工程, 2020, 48(3): 19 DOI: 10.11868/j.issn.1001-4381.2018.001165 Huang X, Li X Y, Fang X D, et al. Research progress in FeCrAl alloys for accident-tolerant fuel cladding. J Mater Eng, 2020, 48(3): 19 DOI: 10.11868/j.issn.1001-4381.2018.001165
[6] Rebak R B, Terrani K A, Fawcett R M. FeCrAl alloys for accident tolerant Fuel cladding in light water reactors // ASME 2016 Pressure Vessels and Piping Conference. Vancouver, 2016: 1
[7] Rebak R B. Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants. EPJ Nuclear Sci Technol, 2017, 3: 34 DOI: 10.1051/epjn/2017029
[8] Terrani K A. Accident tolerant fuel cladding development: Promise, status, and challenges. J Nucl Mater, 2018, 501: 13 DOI: 10.1016/j.jnucmat.2017.12.043
[9] 刘俊凯, 张新虎, 恽迪. 事故容错燃料包壳候选材料的研究现状及展望. 材料导报, 2018, 32(11): 1757 DOI: 10.11896/j.issn.1005-023X.2018.11.001 Liu J K, Zhang X H, Yun D. A complete review and a prospect on the candidate materials for accident-tolerant fuel claddings. Mater Rev, 2018, 32(11): 1757 DOI: 10.11896/j.issn.1005-023X.2018.11.001
[10] Field K G, Yamamoto Y, Pint B A, et al. Accident tolerant FeCrAl fuel cladding: current status towards commercialization // Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. Portland, 2019: 1381
[11] Gussev M N, Field K G, Yamamoto Y. Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys. Mater Des, 2017, 129: 227 DOI: 10.1016/j.matdes.2017.05.009
[12] 柏广海, 薛飞, 张晏玮, 等. 燃料包壳用FeCrAl合金变形行为与热加工图研究. 稀有金属材料与工程, 2020, 49(7): 2340 Bai G H, Xue F, Zhang Y W, et al. Hot deformation behavior and processing maps of FeCrAl alloy for nuclear fuel cladding. Rare Met Mater Eng, 2020, 49(7): 2340
[13] Han W T, Yabuuchi K, Kimura A, et al. Effect of Cr/Al contents on the 475 ℃ age-hardening in oxide dispersion strengthened ferritic steels. Nucl Mater Energy, 2016, 9: 610 DOI: 10.1016/j.nme.2016.05.015
[14] Liu Z, Han Q, Guo Y L, et al. Development of interatomic potentials for Fe–Cr–Al alloy with the particle swarm optimization method. J Alloys Compd, 2019, 780: 881 DOI: 10.1016/j.jallcom.2018.11.079
[15] 涂蒙河, 胡勇. ATF用FeCrAl合金发展历程概述 // 中国核科学技术进展报告(第五卷). 威海, 2017: 77 Tu M H, Hu Y. Overview of the developpement course of FeCrAl alloys for the accident-tolerant fuel cladding // Progress Report on China Nuclear Science & Technology (Vol. 5). Weihai, 2017: 77
[16] Ukai S, Fujiwara M. Perspective of ODS alloys application in nuclear environments. J Nucl Mater, 2002, 307: 749
[17] Ohtsuka S, Ukai S, Fujiwara M, et al. Nano-structure control in ODS martensitic steels by means of selecting titanium and oxygen contents. J Phys Chem Solids, 2005, 66(2-4): 571 DOI: 10.1016/j.jpcs.2004.06.033
[18] Kimura A, Kasada R, Iwata N, et al. Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems. J Nucl Mater, 2011, 417(1-3): 176 DOI: 10.1016/j.jnucmat.2010.12.300
[19] Dou P, Kimura A, Kasada R, et al. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition. J Nucl Mater, 2014, 444(1-3): 441 DOI: 10.1016/j.jnucmat.2013.10.028
[20] Dou P, Kimura A, Kasada R, et al. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition. J Nucl Mater, 2017, 485: 189 DOI: 10.1016/j.jnucmat.2016.12.001
[21] Field K G, Hu X X, Littrell K C, et al. Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys. J Nucl Mater, 2015, 465: 746 DOI: 10.1016/j.jnucmat.2015.06.023
[22] Field K G, Briggs S A, Sridharan K, et al. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys. J Nucl Mater, 2017, 489: 118 DOI: 10.1016/j.jnucmat.2017.03.038
[23] Briggs S A, Edmondson P D, Littrell K C, et al. A combined APT and SANS investigation of α′ phase precipitation in neutron-irradiated model FeCrAl alloys. Acta Mater, 2017, 129: 217 DOI: 10.1016/j.actamat.2017.02.077
[24] 杜沛南, 郑继云, 王辉, 等. Nb含量及退火温度对FeCrAl合金力学性能的影响. 金属热处理, 2018, 43(12): 83 Du P N, Zheng J Y, Wang H, et al. Effects of Nb content and annealing temperature on mechanical properties of FeCrAl alloy. Heat Treat Met, 2018, 43(12): 83
[25] 苏鸿全. Al元素对Fe–Cr–Al包壳材料力学及高温氧化规律研究[学位论文]. 哈尔滨: 哈尔滨工程大学, 2019 Su H Q. Study on Mechanics and High Temperature Oxidation of Fe–Cr–Al Cladding Materials by Al Element [Dissertation]. Harbin: Harbin Engineering University, 2019
[26] 赵琳. Fe–13Cr–5Al–Mo合金微柱力学性能与变形行为研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2018 Zhao L. The Mechanical Properties and Deformation Behavior of Micro-Pillars of Fe–13Cr–5Al–Mo Alloy [Dissertation]. Harbin: Harbin Institute of Technology, 2018
[27] 董红庆. Zr、Hf对Fe–Cr–Al系ODS钢显微组织和拉伸性能的影响[学位论文]. 天津: 天津大学, 2017 Dong H Q. Effect of Zr, Hf Addition on the Microstructure and Tensile Properties of FeCrAl-ODS Steels [Dissertation]. Tianjin: Tianjin University, 2017
[28] 李碚, 吴双霞, 颜玉新, 等. Fe–15Cr–4Al–Y合金中的Y–Fe相及其作用. 中国稀土学报, 1997, 15(2): 139 DOI: 10.3321/j.issn:1000-4343.1997.02.013 Li B, Wu S X, Yan Y X, et al. Y–Fe phase and its effects on microstructure and properties in Fe–15Cr–4Al–Y alloys. J Chin Soc Rare Earths, 1997, 15(2): 139 DOI: 10.3321/j.issn:1000-4343.1997.02.013
[29] Sun Z Q, Bei H B, Yamamoto Y. Microstructural control of FeCrAl alloys using Mo and Nb additions. Mater Charact, 2017, 132: 126 DOI: 10.1016/j.matchar.2017.08.008
[30] Unocic K A, Pint B A, Hoelzer D T. Advanced TEM characterization of oxide nanoparticles in ODS Fe–12Cr–5Al alloys. J Mater Sci, 2016, 51(20): 9190 DOI: 10.1007/s10853-016-0111-5
[31] Dong H Q, Yu L M, Liu Y C, et al. Effect of hafnium addition on the microstructure and tensile properties of aluminum added high-Cr ODS steels. J Alloys Compd, 2017, 702: 538 DOI: 10.1016/j.jallcom.2017.01.298
[32] García-Junceda A, Macía E, Garbiec D, et al. Effect of small variations in Zr content on the microstructure and properties of ferritic ODS steels consolidated by SPS. Metals, 2020, 10(3): 348 DOI: 10.3390/met10030348
[33] 何杨, 刘建华, 韩志彪, 等. 稀土镧对FeCrAl不锈钢高温力学性能的影响. 连铸, 2015, 40(4): 1 He Y, Liu J H, Han Z B, et al. Effects of La on mechanical properties of fecral stainless steel under high temperature. Contin Cast, 2015, 40(4): 1
[34] Naumenko D, Le-Coze J, Wessel E, et al. Effect of trace amounts of carbon and nitrogen on the high temperature oxidation resistance of high purity FeCrAl alloys. Mater Trans, 2002, 43(2): 168 DOI: 10.2320/matertrans.43.168
[35] Sun Z Q, Yamamoto Y, Chen X. Impact toughness of commercial and model FeCrAl alloys. Mater Sci Eng A, 2018, 734: 93 DOI: 10.1016/j.msea.2018.07.074
[36] Sun Z Q, Edmondson P D, Yamamoto Y. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys. Acta Mater, 2018, 144: 716 DOI: 10.1016/j.actamat.2017.11.027
[37] Sun Z Q, Yamamoto Y. Processability evaluation of a Mo-containing FeCrAl alloy for seamless thin-wall tube fabrication. Mater Sci Eng A, 2017, 700: 554 DOI: 10.1016/j.msea.2017.06.036
[38] Yamamoto Y, Sun Z Q, Pint B A, et al. Optimized Gen-II FeCrAl Cladding Production in Large Quantity for Campaign Testing. Oak Ridge: Oak Ridge National Laboratory, 2016
[39] Hou P Y, Zhang X F, Cannon R M. Impurity distribution in Al2O3 formed on an FeCrAl alloy. Scr Mater, 2004, 50(1): 45 DOI: 10.1016/j.scriptamat.2003.09.044
[40] 何杨. 高铝FeCrAl不锈钢凝固特性及高温力学性能基础研究[学位论文]. 北京: 北京科技大学, 2019 He Y. Fundamental Research on the Solidification Characteristics and High-Temperature Mechanical Properties of High-Al FeCrAl Stainless Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
[41] Shi Z M, Han F S. The microstructure and mechanical properties of micro-scale Y2O3 strengthened 9Cr steel fabricated by vacuum casting. Mater Des, 2015, 66: 304 DOI: 10.1016/j.matdes.2014.10.075
[42] Zhang Y, Guo W W, Yan Q Z. Composition, microstructure and mechanical homogeneity evaluation of the Y-bearing 9Cr F/M steel fabricated by VIM & casting technique. Mater Res Express, 2020, 7(3): 036518 DOI: 10.1088/2053-1591/ab7c83
[43] Dryepondt S, Unocic K A, Hoelzer D T, et al. Development of ODS FeCrAl Alloys for Accident-Tolerant Fuel Cladding. Oak Ridge: Oak Ridge National Laboratory, 2015
[44] Ukai S, Nishida T, Okada H, et al. Development of oxide dispersion strengthened ferritic steels for FBR core application, (I) improvement of mechanical properties by recrystallization processing. J Nucl Sci Technol, 1997, 34(3): 256 DOI: 10.1080/18811248.1997.9733658
[45] Dou P, Kimura A, Okuda T, et al. Effects of extrusion temperature on the nano-mesoscopic structure and mechanical properties of an Al-alloyed high-Cr ODS ferritic steel. J Nucl Mater, 2011, 417(1-3): 166 DOI: 10.1016/j.jnucmat.2011.01.061
[46] Dou P, Sang W, Kimura A. Morphology, crystal and metal/oxide interface structures of nanoparticles in Fe–15Cr–2W–0.5Ti–7Al–0.4 Zr–0.5 Y2O3 ODS steel. J Nucl Mater, 2019, 523: 231
[47] Ukai S, Harada M, Okada H, et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials. J Nucl Mater, 1993, 204: 65 DOI: 10.1016/0022-3115(93)90200-I
[48] Iwata N Y, Kimura A, Fujiwara M, et al. Effect of milling on morphological and microstructural properties of powder particles for High-Cr Oxide dispersion strengthened ferritic steels. J Nucl Mater, 2007, 367: 191
[49] Massey C P, Dryepondt S N, Edmondson P D, et al. Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of Low-Cr ODS FeCrAl alloys. J Nucl Mater, 2018, 512: 227 DOI: 10.1016/j.jnucmat.2018.10.017
[50] 徐海健. 15Cr-ODS铁素体合金微观结构及力学性能的研究[学位论文]. 沈阳: 东北大学, 2017 Xu H J. Research on Microstructure and Mechanical Property of 15Cr-ODS Ferritic Alloys [Dissertation]. Shenyang: Northeastern University, 2017
[51] Jönsson B, Berglund R, Magnusson J, et al. High temperature properties of a new powder metallurgical FeCrAl alloy. Mater Sci Forum, 2004, 461: 455
[52] 温冬辉. 核燃料包壳材料不锈钢的成分优化与高温组织稳定性研究[学位论文]. 大连: 大连理工大学, 2019 Wen D H. Composition Optimization and High-Temperature Microstructural Stabilities of Stainless Steels for Nuclear Fuel Cladding Materials [Dissertation]. Dalian: Dalian University of Technology, 2019
[53] Boegelein T, Dryepondt S N, Pandey A, et al. Mechanical response and deformation mechanisms of ferritic oxide dispersion strengthened steel structures produced by selective laser melting. Acta Mater, 2015, 87: 201 DOI: 10.1016/j.actamat.2014.12.047
[54] Czyrska-Filemonowicz A, Dubiel B. Mechanically alloyed, ferritic oxide dispersion strengthened alloys: structure and properties. J Mater Process Technol, 1997, 64(1-3): 53 DOI: 10.1016/S0924-0136(96)02553-8
[55] Li J, Wu S J, Ma P, et al. Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process. Mater Sci Eng A, 2019, 757: 42 DOI: 10.1016/j.msea.2019.04.088
[56] Pimentel G, Chao J, Capdevila C. Recrystallization process in Fe–Cr–Al oxide dispersion-strengthened alloy: Microstructural evolution and recrystallization mechanism. JOM, 2014, 66(5): 780 DOI: 10.1007/s11837-014-0916-0
[57] Miller M K, Hoelzer D T, Kenik E A, et al. Nanometer scale precipitation in ferritic MA/ODS alloy MA957. J Nucl Mater, 2004, 329-333: 338 DOI: 10.1016/j.jnucmat.2004.04.085
[58] Chao J, Capdevila-Montes C, González-Carrasco J L. On the delamination of FeCrAl ODS alloys. Mater Sci Eng A, 2009, 515(1-2): 190 DOI: 10.1016/j.msea.2009.03.017
[59] Quadakkers W J, Elschner A, Speier W, et al. Composition and growth mechanisms of alumina scales on FeCrAl-based alloys determined by SNMS. Appl Surf Sci, 1991, 52(4): 271 DOI: 10.1016/0169-4332(91)90069-V
[60] Czyrska-Filemonowicz A, Szot K, Wasilkowska A, et al. Microscopy (AFM, TEM, SEM) studies of oxide scale formation on FeCrAl based ODS alloys. Solid State Ionics, 1999, 117(1-2): 13 DOI: 10.1016/S0167-2738(98)00243-4
[61] Czyrska-Filemonowicz A, Clemens D, Quadakkers W J. The effect of high temperature exposure on the structure and oxidation behaviour of mechanically alloyed ferritic ODS alloys. J Mater Process Technol, 1995, 53(1-2): 93 DOI: 10.1016/0924-0136(95)01965-H
[62] García-Rodríguez N, Campos M, Torralba J M, et al. Capability of mechanical alloying and SPS technique to develop nanostructured high Cr, Al alloyed ODS steels. Mater Sci Technol, 2014, 30(13): 1676 DOI: 10.1179/1743284714Y.0000000595
[63] Shibata H, Ukai S, Oono N H, et al. Development of accident tolerant FeCrAl-ODS steels utilizing Ce-oxide particles dispersion. J Nucl Mater, 2018, 502: 228 DOI: 10.1016/j.jnucmat.2018.02.020
[64] Shibata H, Ukai S, Oono N H, et al. Development of accident-tolerant FeCrAl steels containing Al2O3 particles by means of internal Al oxidation. Metall Mater Trans A, 2019, 50(4): 1816 DOI: 10.1007/s11661-019-05122-2
[65] Zhang S H, Ukai S, Nishikawa T, et al. Development and characterization of γ/α transformable FeCrAl-ODS alloys by cobalt addition. J Alloys Compd, 2019, 797: 390 DOI: 10.1016/j.jallcom.2019.05.024
[66] Nishikawa T, Zhang S H, Ukai S, et al. Development of α/γ transformable FeCrAl-ODS alloys by nickel addition. Mater Trans, 2019, 60(2): 355 DOI: 10.2320/matertrans.M2018271
[67] Ding R F, Wang H, Jiang Y, et al. Effects of ZrC addition on the microstructure and mechanical properties of Fe–Cr–Al alloys fabricated by spark plasma sintering. J Alloys Compd, 2019, 805: 1025 DOI: 10.1016/j.jallcom.2019.07.181
[68] Zhang S H, Ukai S, Aghamiri S M S, et al. Tensile properties of Co-added FeCrAl oxide dispersion strengthened alloy. J Alloys Compd, 2021, 852: 156956 DOI: 10.1016/j.jallcom.2020.156956
[69] Naimi F, Niepce J-C, Ariane M, et al. Joining of oxide dispersion-strengthened steel using spark plasma sintering. Metals, 2020, 10(8): 1040 DOI: 10.3390/met10081040
[70] Liu T, Shen H L, Zhang T W, et al. Effects of consolidation process on the microstructure and mechanical properties of ODS ferritic alloy. Mater Sci Forum, 2013, 747: 507
[71] 刘泽程, 王国伟, 肖祥友, 等. 选择性激光熔化镍基高温合金的工艺优化. 粉末冶金技术, 2021, 39(1): 81 Liu Z C, Wang G W, Xiao X Y, et al. Process optimization of selective laser melting nickel-based superalloy. Powder Metall Technol, 2021, 39(1): 81
[72] 倪晓晴, 孔德成, 温莹, 等. 3D打印金属材料中孔隙率的影响因素和改善方法. 粉末冶金技术, 2019, 37(3): 163 Ni X Q, Kong D C, Wen Y, et al. Influence factors and improvement methods on the porosity of 3D printing metal materials. Powder Metall Technol, 2019, 37(3): 163
[73] Walker J C, Berggreen K M, Jones A R, et al. Fabrication of Fe–Cr–Al oxide dispersion strengthened PM2000 alloy using selective laser melting. Adv Eng Mater, 2009, 11(7): 541 DOI: 10.1002/adem.200800407
[74] Gao R, Zeng L F, Ding H L, et al. Characterization of oxide dispersion strengthened ferritic steel fabricated by electron beam selective melting. Mater Des, 2016, 89: 1171 DOI: 10.1016/j.matdes.2015.10.073
[75] Maloy S A, Aydogan E, Anderoglu O, et al. Viability of Thin Wall Tube Forming of ATF FeCrAl. Los Alamos: Los Alamos National Laboratory, 2016
[76] Field K G, Snead M A, Yamamoto Y, et al. Handbook on the Material Properties of FeCrAl Alloys for Nuclear Power Production Applications. Oak Ridge: Oak Ridge National Laboratory, 2017
-
期刊类型引用(2)
1. 唐彦渊,羊求民,徐国钻,王红云,钟志强. 微量Y_2O_3对WC-6Co非均匀结构硬质合金微观结构及性能的影响. 粉末冶金技术. 2024(02): 184-191 . 本站查看
2. 周晓刚,纪飞飞. 激光喷丸作用下TC4双相钛合金HCP结构位错组态及性能研究. 应用激光. 2022(10): 99-105 . 百度学术
其他类型引用(0)