高级检索

高导热氮化硅陶瓷用烧结助剂的研究进展

王月隆, 吴昊阳, 贾宝瑞, 张一铭, 张智睿, 刘昶, 田建军, 秦明礼

王月隆, 吴昊阳, 贾宝瑞, 张一铭, 张智睿, 刘昶, 田建军, 秦明礼. 高导热氮化硅陶瓷用烧结助剂的研究进展[J]. 粉末冶金技术, 2024, 42(1): 1-13. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070001
引用本文: 王月隆, 吴昊阳, 贾宝瑞, 张一铭, 张智睿, 刘昶, 田建军, 秦明礼. 高导热氮化硅陶瓷用烧结助剂的研究进展[J]. 粉末冶金技术, 2024, 42(1): 1-13. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070001
WANG Yuelong, WU Haoyang, JIA Baorui, ZHANG Yiming, ZHANG Zhirui, LIU Chang, TIAN Jianjun, QIN Mingli. Research progress on sintering additive used for high thermal conductivity silicon nitride ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 1-13. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070001
Citation: WANG Yuelong, WU Haoyang, JIA Baorui, ZHANG Yiming, ZHANG Zhirui, LIU Chang, TIAN Jianjun, QIN Mingli. Research progress on sintering additive used for high thermal conductivity silicon nitride ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 1-13. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070001

高导热氮化硅陶瓷用烧结助剂的研究进展

基金项目: 国家自然科学基金资助项目(51574031,51574030,51574029,51604240);河北省重点研究发展项目(20311001D);北京市自然科学基金资助项目(2202031,2174079,2162027);中央高校基础研究基金资助项目(FRF-TP-19-015A3,FRF-TP-20-100A1Z,FRF-TP-19-003C2,FRF-TP-17-034A2);USTB–NTUT联合研究项目(06310061);湖南省教育厅科研经费资助项目(18A196);北京科技大学顺德研究生院博士后研究基金资助项目(2020BH014)
详细信息
    通讯作者:

    wuhaoyang@ustb.edu.cn (吴昊阳)

    E-mail: qinml@mater.ustb.edu.cn (秦明礼)

  • 中图分类号: TF123; TQ174.7

Research progress on sintering additive used for high thermal conductivity silicon nitride ceramics

More Information
  • 摘要:

    氮化硅被认为是综合性能最好的陶瓷材料,良好的导热性和优异的力学性能使其成为大功率电子器件用陶瓷基板的主流材料,在纯电动/混合电动汽车中得到广泛应用。烧结助剂对氮化硅烧结活性、微观组织和第二相成分及含量影响较大,进而影响陶瓷导热性能,选择合适的烧结助剂对制备高导热氮化硅陶瓷非常重要。本文整理了目前制备高导热氮化硅陶瓷用烧结助剂研究现状,分析了烧结助剂对氮化硅陶瓷导热性及力学性能的影响,并对烧结助剂未来的研究方向和发展趋势提出了展望。

    Abstract:

    Silicon nitride (Si3N4) is considered to be the best ceramic material for the comprehensive properties. High thermal conductivity and the excellent mechanical properties make it widely used as the ceramic substrate in electric vehicles and hybrid electric vehicles (EV/HEV). Sintering additives have the great influence on the sintering activity, microstructure, and the second phase composition of silicon nitride, and then affect the thermal conductivity of ceramics. Selecting the suitable sintering additives is very important for the preparation of high thermal conductivity silicon nitride ceramics. The research status of sintering additives used for the preparation of high thermal conductivity silicon nitride ceramics was summarized in this paper, the influence of sintering additives on the thermal conductivity and mechanical properties of silicon nitride ceramics was analyzed, and the future research direction and development trend of sintering additives were put forward.

  • H11钢是欧洲压铸行业中最常用的三种热作模具钢之一,其耐冷热疲劳性能好,抗溶蚀性能好,冷热加工性能好,可用于高速锤锻模,应用领域较广[12]。H11钢在加工时会产生返回料(如车削屑),通过固态再生技术[3]对其回收可以有效减少资源的浪费,通过粉末冶金工艺可以节约金属,降低成本,具有一定的经济意义[4]。除此之外,粉末冶金工艺还可以解决传统工艺生产钢铁中存在的元素偏析等问题[5]。薛松等[6]对H13钢进行了等温球化退火热处理,通过该方法得到的退火后碳化物组织分布均匀,消除了原始组织中的网状碳化物和网络碳化物等缺陷,降低了退火硬度。张春华等[7]对H13钢进行了新工艺热处理,包括冷却锻造、加热炉加热、空冷、加热和保温,有助于提高H13钢退火组织的均匀性。本课题组前期有学者在研究H11车削屑固态再生工艺时发现,不同粒度车削屑粉末(中位径分别为75、123和144 μm)对再生材料的影响主要有两方面:一是细粉再生材料的表面裂纹较粗粉再生材料的裂纹少且浅,二是细粉比表面积大、表面活性大。三种不同粒度的粉末在768 MPa压力下,经1180 ℃温度挤压锻后,具有较好的强度和硬度,而塑性较差[8]。万霄等[9]研究了正火冷却和亚温淬火对H13钢微观组织和力学性能的影响,得出正火后采用空冷的冷却方式能够得到均匀性更好的退火态组织的结论。本文以回收的车削屑为原料,经磨粉、粉末压坯、挤压段工艺后制成合格的初级样品,对初级样品进行热处理,并对比了热处理样品与原再生H11钢的力学性能。

    利用JMatPro软件可模拟计算出钢在不同温度下的相组成、奥氏体化过程及过冷奥氏体连续冷却的各项参数,为实际热处理工艺提供依据[1012]。在JMatPro软件中输入H11钢组成成份(表1),模拟计算出钢在不同温度下的物相含量(质量分数)[13],结果如图1所示。

    表  1  H1钢化学成分(质量分数)
    Table  1.  Chemical composition of the H11 steels %
    钢号CCrMoSiVMn
    H11(4Cr5MoSiV)0.33~0.434.75~5.501.10~1.160.80~1.200.30~0.600.25~0.50
    下载: 导出CSV 
    | 显示表格
    图  1  在不同温度下H11钢中物相含量(a)和M(C,N)含量(b)
    Figure  1.  Phase (a) and M(C,N) (b) content in H11 steels at different temperatures

    图1可知,当温度在850 ℃以上时,只有奥氏体和极少量MC型碳化物存在,当温度逐渐降低,奥氏体含量也逐渐减少,铁素体和MC型碳化物开始析出。温度825 ℃时,奥氏体相消失,850~825 ℃区间内,MC碳化物含量减少。该合金的珠光体转变为奥氏体温度(A1)为830 ℃,铁素体转变为奥氏体温度(A3)为920.9 ℃。当温度为900 ℃时,M3C型碳化物质量分数为1.1%,随着温度降低,该碳化物含量开始升高;850 ℃时,碳化物质量分数升高到2.5%;在850~820 ℃区间内,碳化物含量升高速度加快;820 ℃时,该碳化物质量分数升高到6.2%[1415]

    图2表2给出了H11钢奥氏体化过程曲线和参数,反映了奥氏体化过程中加热速度、温度与奥氏体化程度之间关系。其中,A1线是珠光体转变为奥氏体的临界温度线,该线下方①区域的组织为铁素体+碳化物;A3线是铁素体转变为奥氏体的临界温度线,②区域的组织为奥氏体+铁素体+碳化物;均一化线与A3线之间的③区域组织为奥氏体+碳化物;而均一化线以上的④区域组织为均匀化奥氏体。从图2表2中可以看出,H11钢的相变温度随加热速度增大而升高,均一化温度也升高,从表2中还可以看出,奥氏体均匀化时间随加热速度增大而减少。根据不同的加热速度选择合适的保温时间,当加热速度小时,要适当延长保温时间。

    图  2  H11钢奥氏体化过程曲线
    Figure  2.  Austenitization curves of the H11 steels
    表  2  不同加热速度对应的奥氏体化过程参数
    Table  2.  Parameters of the austenitizing process at different heating rates
    加热速度 /
    (℃·s−1)
    A1 / ℃ A3 / ℃ 奥氏体均匀化
    温度 / ℃
    奥氏体均匀化
    时间 / s
    1 816 836 865.0 845.0
    10 821 872 924.0 90.4
    100 841 956 1011.2 9.9
    下载: 导出CSV 
    | 显示表格

    H11钢过冷奥氏体连续冷却转变(continuous cooling transformation,CCT)曲线如图3所示,反映了过冷奥氏体连续冷却时的转变产物类型以及转变量与冷却速度之间的关系。根据图3可以得到不同冷却速度下合金相组成含量,结果如表3所示。当冷却速度从100.00 ℃/s降低到0.01 ℃/s时,铁素体和珠光体含量逐渐增大,贝氏体和马氏体含量逐渐减少;冷却速度为0.01 ℃/s时,合金组织只由铁素体和珠光体组成;冷却速度在10.00 ℃/s及以上时,合金中组织主要为马氏体。

    图  3  H11钢过冷奥氏体连续冷却转变曲线
    Figure  3.  Continuous cooling transformation curves of the H11 steels
    表  3  不同冷却速度下H11钢中相组成含量
    Table  3.  Phase composition content in the H11 steels at different cooling rates
    冷却速度 / (℃·s−1)质量分数 / %
    奥氏体铁素体贝氏体珠光体马氏体
    0.0100.3300099.670
    0.1000.062395.1601.892.88
    1.000.18015.290084.52
    10.000.2100.065099.72
    100.000.2100099.79
    下载: 导出CSV 
    | 显示表格

    通过磨粉机研磨H11钢得到实验用钢粉,先将粗粉过60目筛,后过80目筛,再将过筛后的钢粉重新过200目筛,得到3种不同粒度H11钢粉末。钢粉1为过200目筛后得到的粉,钢粉2为过80目筛的粉,钢粉3为过60目筛的粉。经过测量,挤压后三种钢粉的密度分别为7.132 g/cm3、7.403 g/cm3、7.430 g/cm3。参照课题组前期研究结果,选择挤压锻温度为1220 ℃,压坯尺寸为ϕ5 mm×55 mm。根据JMatPro软件模拟结果确定球化退火热处理制度,如图4所示,脱模时将模具加热到450 ℃左右,随后样品随炉升温到880 ℃,保温3 h,炉冷到750 ℃,保温4 h,后炉冷到500 ℃以下,出炉空冷[4,14]。将钢粉1、钢粉2和钢粉3经过固态再生工艺制备的样品称为试样1、试样2和试样3。试样1中的杂质粒子分布极不均匀,试样2和试样3中的杂质在基体中总体分布比较均匀。

    图  4  H11钢球化退火制度示意图
    Figure  4.  Schematic diagram of the spheroidizing annealing system for the H11 steels

    利用PANalytical型X射线衍射仪(X-ray diffraction analyzer,XRD)对挤压锻样品的进行物相分析。采用金相显微镜观察试样金相组织,选取相同位置取样,利用砂纸磨制+抛光膏抛光+10%硝酸酒精溶液(体积分数)腐蚀得到金相试样。使用硬度计测试退火试样硬度。通过拉伸试验机测试退火试样沿挤压锻方向的拉伸性能。将热处理后的试样用线切割制成片状,将样品沿平行于和垂直于挤压锻方向进行切割,平行于挤压锻方向拉伸样品总长52 mm、厚2 mm,平行段长15 mm、宽3 mm、厚2 mm,夹持段两端各15 mm,过渡弧半径为3.5 mm;垂直于挤压锻方向拉伸样品平行段长度为8 mm、宽3 mm、后2 mm,过渡弧半径为3.5 mm,夹持段两端各长为5 mm。利用扫描电子显微镜(scanning electron microscope,SEM)观察拉伸试样断口形貌,分析试样断裂形式。

    挤压锻试样X射线衍射图谱如5所示。由图可知,试样1有明显的氧化物峰,说明钢粉1氧化严重;试样2和试样3中有Fe7C3生成,这对材料性能,尤其是硬度有影响,材料硬度值将会随着其析出量的增加而升高。

    图  5  挤压锻试样X射线衍射谱
    Figure  5.  XRD of the extrusion forged samples

    图6为球化退火热处理试样的X射线衍射图。由图可知,退火样品基体仍为α-Fe,试样1中Fe3O4峰型变尖,说明结晶度增加[16],试样2、试样3中Fe7C3相消失[17],说明该相含量过少,材料硬度值下降;基体铁素体峰型变窄变尖,说明材料中铁素体结晶度和原始再生H11钢相比有所提高,晶粒较大。

    图  6  球化退火热处理试样X射线衍射谱
    Figure  6.  XRD of the samples after spheroidizing annealing

    三种不同粒度试样热处理前金相组织如图7图8所示。从图7(a)和图7(8)可以看出,由于杂质分布不均,在杂质较少区域,发生了再结晶和晶粒长大,产生了较大的铁素体晶粒,并且从金相图推测,该区域基体发生了脱碳,且氧化物含量越高,基体碳损失越大。

    图  7  热处理前试样沿挤压方向金相组织:(a)试样1;(b)试样2;(c)试样3
    Figure  7.  Metallographic microstructure of the samples along the extrusion direction before heat treatment: (a) sample 1; (b) sample 2; (c) sample 3
    图  8  热处理前试样沿垂直挤压方向金相组织:(a)试样1;(b)试样2;(c)试样3
    Figure  8.  Metallographic microstructure of the samples vertical the extrusion direction before heat treatment: (a) sample 1; (b) sample 2; (c) sample 3

    图7(a)~图7(b)可以看出,在挤压锻温度1220 ℃下的样品晶粒为等轴晶,发生了再结晶和晶粒长大,基体主要为粒状贝氏体和铁素体;图7(b)~图7(c)和图8(b)~图8(c)的基体组织为下贝氏体、铁素体;从图7(b)~图7(c)可以看出,压坯在加热到奥氏体温度区间挤压锻后产生了带状组织,这些带状组织在冷却过程以残余奥氏体的形式保留了下来,并沿挤压锻方向呈带状分布。

    三种试样退火金相组织如图9图10所示。从图中可以看出,等温球化退火试样的组织较原再生H11样品更均匀,晶粒较挤压锻之前变小,横向和纵向的组织差异较小,纵向组织带状分布消失。图9(a)和图10(a)基体主要组织为铁素体,图9(b)和图10(b)为珠光体和弥散分布的碳化物,图9(c)和图10(c)为珠光体、弥散分布在珠光体上的碳化物和残余奥氏体[18]

    图  9  等温球化退火试样沿平行挤压方向金相组织:(a)试样1;(b)试样2;(c)试样3
    Figure  9.  Metallographic microstructure of the samples parallel the extrusion direction after isothermal spheroidized annealing: (a) sample 1; (b) sample 2; (c) sample 3
    图  10  等温球化退火试样垂直挤压方向金相组织:(a)试样1;(b)试样2;(c)试样3
    Figure  10.  Metallographic microstructure of the samples vertical the extrusion direction after isothermal spheroidized annealing: (a) sample 1; (b) sample 2; (c) sample 3

    三种粒度试样在等温球化热处理前后力学性能如表4所示。热处理前,试样1硬度要比试样2和试样3低很多,通过对金相组织和X射线衍射结果分析可知,固溶在热处理前试样1基体中的碳和氧化物发生反应脱出,试样2和试样3基体中生成了弥散分布的Fe7C3,这种类型碳化物的析出使得试样硬度得到明显提升。经等温球化退火热处理后三种试样硬度均出现明显下降,这主要是由于在等温球化退火过程中,材料基体组织发生了改变,珠光体内的片状渗碳体以及先共析渗碳体都变为球粒状,均匀分布于铁素体基体中。样品经过等温球化退火后的组织为球状珠光体和弥散分布的颗粒状碳化物,挤压锻过程中生成的碳化物Fe7C3相消失。碳化物自身硬度、弥散分布状态、大小和相对含量对钢的硬度起着至关重要的作用[6]

    表  4  不同粒度试样热处理前后性能参数
    Table  4.  Performance parameters of the samples in different particle sizes before and after heat treatment
    力学性能等温球化热处理前等温球化热处理后
    试样1试样2试样3试样1试样2试样3
    抗拉强 / MPa2188151127206471541
    硬度,Hv167451478164185192
    延伸率 / %0.50.73.30.54.512.8
    下载: 导出CSV 
    | 显示表格

    三种试样球化退火后沿挤压锻方向的工程应力-应变曲线如图11所示。从图中可以看出,由于钢粉1颗粒较细,杂质粒子在某些区域发生严重的偏析,造成试样1中杂质粒子聚集,形成尺寸较大的团聚区,分布极不均匀,屈服强度和抗拉强度接近且都较低,几乎没有产生塑性变形,延伸率仅为0.5%;试样2和试样3的屈服强度接近,但抗拉强度和延伸率相差较大,这也是由于氧化物夹杂的影响,试样2所用原料钢粉2杂质含量相对于试样3所用原料钢粉3要高[19],杂质在局部区域会发生小范围的聚集,这大大增加了材料在杂质聚集区断裂的可能。从表4中退火样品与原再生H11钢对比可知,退火样品抗拉强度降低,延伸率升高,塑性韧性变好。

    图  11  球化退火试样沿挤压锻方向工程应力-应变曲线
    Figure  11.  Engineering stress-strain curves of the samples along the extrusion direction after isothermal spheroidized annealing

    图12为不同粒度试样退火后平行挤压方向拉伸断口形貌。从图中可以看出,试样1断口形貌呈现明显的砂糖状,氧化物杂质较多,属于晶间断裂的类型。试样2和试样3呈现出准解理断裂的特征,断口表面有大大小小的韧窝,还可以观察到明显撕裂棱[20]。试样3的韧窝要比试样2的韧窝深,撕裂棱更粗,撕裂棱上布满小韧窝,这说明试样3的塑性要比试样2的较好,延伸率更高,这是由于试样3所用原料钢粉3中杂质较少,材料在杂质聚集区断裂的可能减少。这与拉伸试验的结果一致。

    图  12  不同粒度试样球化退火后沿平行挤压方向拉伸断口形貌:(a)试样1;(b)试样2;(c)试样3
    Figure  12.  Tensile fracture morphologies of the samples in different particle sizes after spheroidizing annealing parallel the extrusion direction: (a) sample 1; (b) sample 2; (c) sample 3

    (1)粉末粒度与杂质对H11车削屑固态再生钢强韧性的影响具有双重作用:一方面,粉末粒度越小,高温挤锻压后强度和硬度越好,但杂质粒子越易出现偏析,发生聚集,分布不均,韧性较差;另一方面,粉末粒度越小,高温挤锻压后等温球化热处理过程中氧化越严重,强度和硬度变差,韧性较好。

    (2)等温球化退火处理后样品的组织为球状珠光体和弥散分布的颗粒状碳化物。

    (3)等温球化退火处理后,材料的塑性变好,采用粒度为144 μm的钢粉制备的样品延伸率从3.4%升高到12.8%,但抗拉强度和硬度分别下降了52%和60%。

    (4)粉末粒度过小容易发生氧化且杂质不易去除,后续实验应选择粒度合适的车削屑进行。

  • 图  1   液相烧结组织形貌变化示意图[20]

    Figure  1.   Schematic of the microstructure changes during the liquid phase sintering[20]

    图  2   MgO和Al2O3对氮化硅陶瓷导热性能的影响[23]

    Figure  2.   Effect of the MgO and Al2O3 content on the thermal conductivity of Si3N4 ceramics[23]

    图  3   不同稀土氧化物烧结助剂形成第二相厚度[35]

    Figure  3.   HRTEM micrographs of the grain boundaries in Si3N4 with the different sintering additives[35]

    图  4   稀土离子半径与氮化硅热导率的关系[36]

    Figure  4.   Relationship between the thermal conductivity of Si3N4 and the ion radius of rare earth elements[36]

    图  5   MgO粒径对氮化硅陶瓷微观形貌的影响[43]:(a)、(c)D50=5.9 μm;(b)、(d)D50=1.6 μm

    Figure  5.   Effect of MgO particle size on micromorphology of the silicon nitride ceramics[43]: (a), (c) D50=5.9 μm; (b), (d) D50=1.6 μm

    图  6   烧结助剂摩尔分数对氮化硅陶瓷热导率的影响[45]:(a)2%Y2O3xMgO,x=0~8%;(b)yY2O3−5%MgO,y=0~5%

    Figure  6.   Thermal conductivities of the sintered Si3N4 ceramics with the different sintering additives[45]: (a) 2%Y2O3xMgO,x=0~8%; (b) yY2O3−5%MgO,y=0~5%

    图  7   不同保温时间下氮化硅陶瓷微观形貌图[46]:(a)、(b)3 h;(c)、(d)60 h

    Figure  7.   SEM images of the Si3N4 ceramics obtained at 1900 ℃ for the various holding time[46]: (a), (b) 3 h; (c), (b) 60 h

    图  8   晶格氧含量与氮化硅陶瓷热导率的关系[48]

    Figure  8.   Relationship between the lattice oxygen contents and the thermal conductivities for sintered Si3N4 ceramics[48]

    图  9   经过烧结处理后3YM样品能谱分析[52]

    Figure  9.   Energy spectrum analysis of the elements distribution in sample 3YM after sintering[52]

    图  10   氮化硅陶瓷扫描电子显微形貌[64]:(a)、(c)SN;(b)、(d)SNC

    Figure  10.   SEM inmages of the Si3N4 ceramics samples[64]: (a), (c) SN; (b), (d) SNC

    图  11   氮化硅基板热导率随温度的变化(SN1, SNN10 , SNN15, and SNN20)[65]

    Figure  11.   Temperature dependence of thermal conductivities of the Si3N4 substrate (SN1, SNN10 , SNN15, and SNN20)[65]

    表  1   各种陶瓷基板的物理性能

    Table  1   Physical properties of the ceramic substrates

    材料 热导率 /
    (W m−1·K−1
    热膨胀系数 /
    (×10−6 K−1
    介电常数
    (1 MHz)
    电场强度 /
    (kV·mm−1
    断裂韧性 /
    (MPa·m1/2
    抗弯强度 /
    MPa
    可靠性* /
    Al2O3 30 7.2 9.7 10 3.0 400 300
    BeO 200~250 7.5 6.7 10 3.3 250
    AlN 150~200 3.5 8.9 15 2.7 350 200
    Si3N4 90 3.2 9.4 >20 6.0~8.0 600~800 >5000
    *注:可靠性是指在−40~+150 ℃条件下循环,材料不破坏次数。
    下载: 导出CSV

    表  2   不同烧结助剂下物相强度[29]

    Table  2   Phase intensity with the different sintering additives[29]

    烧结助剂烧结时间 / h物相(强度)*
    La2O34β-Si3N4(s), α-Si3N4(s), La20N4Si12O48(m), La2SiO5(w)
    16β-Si3N4(vs), La20N4Si12O48(m), La2SiO5(w)
    Nd2O34β-Si3N4(vs), Nd2Si3O3N4(w), Nd4Si3O12 (w)
    16β-Si3N4(vs), Nd2Si3O3N4(w), Nd4Si3O12 (w)
    Gd2O34β-Si3N4(vs), Gd20N4Si12O48(m), Gd2Si3O3N4(vw)
    16β-Si3N4(vs), Gd20N4Si12O48(m), Gd2Si3O3N4(w)
    Y2O34β-Si3N4(vs), Y20N4Si12O48(m), Y2Si3O3N4(w)
    16β-Si3N4(vs), Y20N4Si12O48(m), Y2Si3O3N4(w)
    Yb2O34β-Si3N4(vs), Yb2Si2N2O7(s)
    16β-Si3N4(vs), Yb2Si2N2O7(s)
    Sc2O34β-Si3N4(vs), Sc2SiO5(vw)
    16β-Si3N4(vs), Sc2SiO5(vw)
    *注:vs为非常强,s为强,m为中等,w为弱,vw为非常弱
    下载: 导出CSV

    表  3   不同稀土氧化物烧结助剂对氮化硅陶瓷性能的影响[29]

    Table  3   Properties of the Si3N4 ceramics with the different sintering additives[29]

    烧结助剂离子半径 / nm烧结时间 / h密度 / (g·cm−3)热导率 / (W·m−1·K−1)晶格氧质量分数 / %
    平行垂直
    La2O30.10643.3528.131.60.279±0.037
    163.3351.164.90.116±0.006
    Nd2O30.10043.3964.181.60.094±0.005
    163.3872.297.90.092±0.013
    Gd2O30.09443.4278.7100.70.076±0.002
    163.4281.6106.90.069±0.013
    Y2O30.08943.2582.9104.60.076±0.001
    163.2882.7105.80.063±0.002
    Yb2O30.08643.4686.1115.00.061±0.002
    163.4488.6114.70.080±0.006
    Sc2O30.07343.2184.9100.80.085±0.004
    163.1989.6106.30.077±0.003
    下载: 导出CSV

    表  4   添加不同种类稀土氢化物为烧结助剂制备得到氮化硅陶瓷的热导率

    Table  4   Thermal conductivity of Si3N4 doped with the different rare-earth hydride as the sintering additives

    烧结助剂烧结时间 / h热导率 / (W·m−1·K−1)
    YH2[52]4101.80
    12123.00
    24131.60
    GdH2[54]498.07
    12119.07
    24134.90
    YbH2[55]4100.20
    12118.90
    24131.15
    下载: 导出CSV
  • [1] 申胜飞, 李茜. 5G通信技术关键材料发展研究. 科技中国, 2019(8): 50

    Shen S F, Li Q. Research on the development of key materials for 5G communication technology. Scitech China, 2019(8): 50

    [2]

    James P. Thermal challenges facing new-generation light-emitting diodes (LEDs) for lighting applications // International Symposium on Optical Science and Technology. Seattle, 2002: 215

    [3] 程浩, 陈明祥, 罗小兵, 等. 电子封装陶瓷基板. 现代技术陶瓷, 2019, 40(4): 265

    Cheng H, Chen M X, Luo X B, et al. Ceramic substrate for electronic packaging. Adv Ceram, 2019, 40(4): 265

    [4] 陆琪, 刘英坤, 乔志壮, 等. 陶瓷基板研究现状及新进展. 半导体技术, 2021, 46(4): 257

    Lu Q, Liu Y K, Qiao Z Z, et al. Reserach status and new progress of ceramic substrate. Semicond Technol, 2021, 46(4): 257

    [5] 陈寰贝, 王子良, 庞学满, 等. 大功率高可靠电子封装研究发展趋势. 真空电子技术, 2018(4): 8

    Chen H B, Wang Z L, Pang X M, et al. Development trend of high power and reliable electronic packaging. Vacuum Electron, 2018(4): 8

    [6]

    Slack G A, Austerman S B. Thermal conductivity of BeO single crystals. J Appl Phys, 1971, 42(12): 4713 DOI: 10.1063/1.1659844

    [7] 李少鹏. 新一代IGBT模块用高可靠氮化硅陶瓷覆铜基板研究进展. 电子工业专用设备, 2019(1): 1 DOI: 10.3969/j.issn.1004-4507.2019.01.001

    Li S P. Research and development of bongding copper to Si3N4 ceramic substrates uesd in IGBT module. Equip Electron Prod Manuf, 2019(1): 1 DOI: 10.3969/j.issn.1004-4507.2019.01.001

    [8]

    IEA. Global EV outloook 2022. IEA(2022-05). https://www.iea.org/reports/global-ev-outlook-2022

    [9]

    Hardie D, Jack K H. Crystal structures of silicon nitride. Nature, 1957, 180: 332 DOI: 10.1038/180332a0

    [10]

    Riley F L. Silicon nitride and related materials. J Am Ceram Soc, 2000, 83(2): 245 DOI: 10.1111/j.1151-2916.2000.tb01182.x

    [11]

    Haggerty J S, Lightfoot A. Opportunities for enhancing the thermal conductivities of SiC and Si3N4 ceramics through improved processing // Proceedings of the 19th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures—A: Ceramic Engineering and Science Proceedings. Cocoa Beach, 1995: 475

    [12]

    Hirosaki N, Ogata S, Kocer C, et al. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si3N4. Phys Rev B, 2002, 65(13): 134110 DOI: 10.1103/PhysRevB.65.134110

    [13]

    Slack G A. Nonmetallic crystals with high thermal conductivity. J Phys Chem Solids, 1973, 34: 321 DOI: 10.1016/0022-3697(73)90092-9

    [14]

    Jack K H, Wilison W I. Ceramics based on the Si−Al−O−N and related systems. Nat Phys Sci, 1972, 238(80): 28 DOI: 10.1038/physci238028a0

    [15]

    Oyama Y. Solid solution in the ternary system, Si3N4−AlN−Al2O3. Jpn J Appl Phys, 1972, 11: 760 DOI: 10.1143/JJAP.11.760

    [16]

    Kusano D, Hyuga H, Zhou Y, et al. Effect of aluminum content on mechanical properties and thermal conductivities of sintered reaction-bonded silicon nitride. Int J Appl Ceram Technol, 2014, 11(3): 534 DOI: 10.1111/ijac.12035

    [17]

    Zhou Y, Zhu X W, Hirao K, et al. Sintered reaction-bonded silicon nitride with high thermal conductivity and high strength. Int J Appl Ceram Technol, 2008, 5(2): 119 DOI: 10.1111/j.1744-7402.2008.02187.x

    [18]

    Uskoković D P, Palmour H, Spriggs R M. Science of Sintering. New York: Plenum Press, 1989

    [19]

    Tanaka I, Pezzotti G, Okamoto T, et al. Hot isostatic press sintering and properties of silicon nitride without additives. J Am Ceram Soc, 1989, 72(9): 1656 DOI: 10.1111/j.1151-2916.1989.tb06298.x

    [20]

    German R M, Suri P, Park S J. Review: liquid phase sintering. J Mater Sci, 2009, 44: 1 DOI: 10.1007/s10853-008-3008-0

    [21]

    Pezzotti G, Ota K I, Kleebe H J. Grain-boundary relaxation in high-purity silicon nitride. J Am Ceram Soc, 1996, 79(9): 2237 DOI: 10.1111/j.1151-2916.1996.tb08968.x

    [22]

    Wang C M, Ruhle M, Riley F L, et al. Silicon nitride crystal structure and observations of lattice defects. J Mater Sci, 1996, 31: 5281 DOI: 10.1007/BF01159294

    [23]

    Okamoto Y, Hirosaki N, Ando M, et al. Effect of sintering additive composition on the thermal conductivity of silicon nitride. J Mater Res, 1998, 13(12): 3473 DOI: 10.1557/JMR.1998.0474

    [24]

    Brinker C J, Haaland D M, Loehman R E. Oxynitride glasses prepared from gels and melts. J Non-Cryst Solids, 1983, 56: 179 DOI: 10.1016/0022-3093(83)90465-9

    [25]

    Negita K. Effective sintering aids for Si3N4 ceramics. J Mater Sci Lett, 1985, 4: 755 DOI: 10.1007/BF00726981

    [26]

    Negita K. Ionic radii and electronegativities of effective sintering aids for Si3N4 ceramics. J Mater Sci Lett, 1985, 4: 417 DOI: 10.1007/BF00719733

    [27]

    Lange F F. Phase relations in the system Si3N4−SiO2−MgO and their interrelation with strength and oxidation. J Am Ceram Soc, 1977, 61(1-2): 53

    [28]

    Yeheskel O, Gefen Y, Talianker M. Hot isostatic pressing of Si3N4 with Y2O3 additions. J Mater Sci, 1984, 19: 745 DOI: 10.1007/BF00540444

    [29]

    Kitayama M, Hirao K, Watari K, et al. Thermal conductivity of β-Si3N4: III, effect of rare-earth (RE=La, Nd, Gd, Y, Yb, and Sc) oxide additives. J Am Ceram Soc, 2001, 84(2): 353 DOI: 10.1111/j.1151-2916.2001.tb00662.x

    [30]

    Kitayama M, Hirao K, Kanzaki S. Effect of rare earth oxide additives on the phase transformation rates of Si3N4. J Am Ceram Soc, 2006, 89(8): 2612 DOI: 10.1111/j.1551-2916.2006.01106.x

    [31]

    Satet R L, Hoffmann M J. Grain growth anisotropy of β-silicon nitride in rare-earth doped oxynitride glasses. J Eur Ceram Soc, 2004, 24(12): 3437 DOI: 10.1016/j.jeurceramsoc.2003.10.034

    [32]

    Kitayama M, Hirao K, Toriyama M, et al. Thermal conductivity of β-Si3N4: I, effects of various microstructural factors. J Am Ceram Soc, 1999, 82(11): 3105 DOI: 10.1111/j.1151-2916.1999.tb02209.x

    [33]

    Kitayama M, Hirao K, Tsuge A, et al. Thermal conductivity of β-Si3N4: II, effect of lattice oxygen. J Am Ceram Soc, 2000, 83(8): 1985 DOI: 10.1111/j.1151-2916.2000.tb01501.x

    [34]

    Kitayama M, Hirao K, Tsuge A, et al. Oxygen content in β-Si3N4 crystal lattice. J Am Ceram Soc, 1999, 82(11): 3263 DOI: 10.1111/j.1151-2916.1999.tb02238.x

    [35]

    Wang C M, Pan X Q, Hoffmann M J, et al. Grain boundary films in rare-earth-glass-based silicon nitride. J Am Ceram Soc, 1996, 79(3): 788 DOI: 10.1111/j.1151-2916.1996.tb07946.x

    [36]

    Liu W, Tong W X, Lu X X, et al. Effects of different types of rare earth oxide additives on the properties of silicon nitride ceramic substrates. Ceram Int, 2019, 45(9): 12436 DOI: 10.1016/j.ceramint.2019.03.176

    [37]

    Hirosaski N, Okada A, Matoba K. Sintering of Si3N4 with the addition of rare-earth oxides. J Am Ceram Soc, 1988, 71(3): 144

    [38]

    Kubaschewski O, Alock C B. Metallurgical Thermochemistry. 5th ed. London: Pergamon, 1979

    [39]

    Oyama Y, Kamigaito O. A study on the sintered Si3N4−MgO system. J Ceram Soc Jpn, 1973, 81(7): 290

    [40]

    Gauckler L J, Lukas H L, Tien T Y. Crystal chemistry of β-Si3N4 solid solutions containing metal oxides. Mater Res Bull, 1976, 11: 503 DOI: 10.1016/0025-5408(76)90231-2

    [41]

    Tsuge A, Kudo H, Komeya K. Reaction of Si3N4 and Y2O3 in hot-pressing. J Am Ceram Soc, 1974, 57(6): 269

    [42]

    Lin Y B, Ning X S, Zhou H P, et al. Study on the thermal conductivity of silicon nitride ceramics with magnesia and yttria as sintering additives. Mater Lett, 2002, 57: 15 DOI: 10.1016/S0167-577X(02)00690-0

    [43]

    Go S I, Li Y S, Ko J W, et al. Microstructure and thermal conductivity of sintered reaction-bonded silicon nitride: the particle size effects of MgO additive. Adv Mater Sci Eng, 2018, 2018: 4263497

    [44]

    Liu W, Tong W X, He R X, et al. Effect of the Y2O3 additive concentration on the properties of a silicon nitride ceramic substrate. Ceram Int, 2016, 42(16): 18641 DOI: 10.1016/j.ceramint.2016.09.001

    [45]

    Zhou Y, Hyuga H, Kusano D, et al. Effects of yttria and magnesia on densification and thermal conductivity of sintered reaction-bonded silicon nitrides. J Am Ceram Soc, 2019, 102(4): 1579 DOI: 10.1111/jace.16015

    [46]

    Zhou Y, Hyuga H, Kusano D, et al. A tough silicon nitride ceramic with high thermal conductivity. Adv Mater, 2011, 23(39): 4563 DOI: 10.1002/adma.201102462

    [47]

    Hayashi H, Hirao K, Toriyama M, et al. MgSiN2 addition as a means of increasing the thermal conductivity of β-silicon nitride. J Am Ceram Soc, 2001, 84(12): 3060 DOI: 10.1111/j.1151-2916.2001.tb01141.x

    [48]

    Lee H M, Lee E B, Kim D L, et al. Comparative study of oxide and non-oxide additives in high thermal conductive and high strength Si3N4 ceramics. Ceram Int, 2016, 42(15): 17466 DOI: 10.1016/j.ceramint.2016.08.051

    [49]

    Zhang J, Cui W, Li F, et al. Effects of MgSiN2 addition and post-annealing on mechanical and thermal properties of Si3N4 ceramics. Ceram Int, 2020, 46(10): 15719 DOI: 10.1016/j.ceramint.2020.03.097

    [50]

    Jiang G J, Xu J Y, Shen H, et al. Fabrication of silicon nitride ceramics with magnesium silicon nitride and yttrium oxide as sintering additives. Adv Mater Res, 2010, 177: 235 DOI: 10.4028/www.scientific.net/AMR.177.235

    [51]

    Zhu X W, Hayashi H, Zhou Y, et al. Influence of additive composition on thermal and mechanical properties of β–Si3N4 ceramics. J Mater Res, 2004, 19(11): 3270 DOI: 10.1557/JMR.2004.0416

    [52]

    Wang W D, Yao D X, Liang H Q, et al. Effect of in-situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics. J Eur Ceram Soc, 2020, 40(15): 5316 DOI: 10.1016/j.jeurceramsoc.2020.06.005

    [53]

    Wang W D, Yao D X, Liang H Q, et al. Improved thermal conductivity of β-Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive. J Am Ceram Soc, 2020, 103(10): 5567 DOI: 10.1111/jace.17271

    [54]

    Wang W D, Yao D X, Liang H Q, et al. Improved thermal conductivity of β-Si3N4 ceramics through the modification of the liquid phase by using GdH2 as a sintering additive. Ceram Int, 2021, 47(4): 5631 DOI: 10.1016/j.ceramint.2020.10.148

    [55] 王为得, 陈寰贝, 李世帅, 等. 以YbH2-MgO体系为烧结助剂制备高热导率高强度氮化硅陶瓷. 无机材料学报, 2021, 36(9): 959 DOI: 10.15541/jim20200705

    Wang W D, Chen H B, Li S S, et al. Preparation of silicon nitride with high thermal conductivity and high flexural strength using YbH2-MgO as sintering additive. J Inorg Mater, 2021, 36(9): 959 DOI: 10.15541/jim20200705

    [56]

    Liang H Q, Wang W D, Zuo K H, et al. Effect of LaB6 addition on mechanical properties and thermal conductivity of silicon nitride ceramics. Ceram Int, 2020, 46(11): 17776 DOI: 10.1016/j.ceramint.2020.04.083

    [57]

    Bing B, Fu T, Ning X S. Thermal conductivity and mechanical property of Si3N4 ceramics sintered with CeF3/LaF3 additives. Adv Mater Res, 2010, 105-106: 171 DOI: 10.4028/www.scientific.net/AMR.105-106.171

    [58]

    Li Y S, Kim H N, Wu H B, et al. Enhanced thermal conductivity in Si3N4 ceramic with the addition of Y2Si4N6C. J Am Ceram Soc, 2018, 101(9): 4128 DOI: 10.1111/jace.15544

    [59]

    Qin M L, Lu H F, Wu H Y, et al. Powder injection molding of complex-shaped aluminium nitride ceramic with high thermal conductivity. J Eur Ceram Soc, 2019, 39(4): 952 DOI: 10.1016/j.jeurceramsoc.2018.11.037

    [60]

    Kurokawa Y, Utsumi K, Takamizawa H. Development and microstructural characterization of high-thermal-conductivity aluminum nitride ceramics. J Am Ceram Soc, 1988, 71(7): 588 DOI: 10.1111/j.1151-2916.1988.tb05924.x

    [61]

    He Y Q, Li X Y, Zhang J X, et al. Method for fabricating microwave absorption ceramics with high thermal conductivity. J Eur Ceram Soc, 2018, 38(2): 501 DOI: 10.1016/j.jeurceramsoc.2017.09.042

    [62]

    Li Y S, Kim H N, Wu H B, et al. Improved thermal conductivity of sintered reaction-bonded silicon nitride using a BN/graphite powder bed. J Eur Ceram Soc, 2017, 37(15): 4483 DOI: 10.1016/j.jeurceramsoc.2017.05.045

    [63]

    Hu F, Zhu T B, Xie Z P, et al. Elimination of grain boundaries and its effect on the properties of silicon nitride ceramics. Ceram Int, 2020, 46(8): 12606 DOI: 10.1016/j.ceramint.2020.02.024

    [64]

    Li Y S, Kim H N, Wu H B, et al. Enhanced thermal conductivity in Si3N4 ceramic by addition of a small amount of carbon. J Eur Ceram Soc, 2019, 39(2-3): 157 DOI: 10.1016/j.jeurceramsoc.2018.10.006

    [65]

    Dow H S, Kim W S, Lee J W. Thermal and electrical properties of silicon nitride substrates. AIP Adv, 2017, 7(9): 095022 DOI: 10.1063/1.4996314

图(11)  /  表(4)
计量
  • 文章访问数:  2984
  • HTML全文浏览量:  245
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 录用日期:  2021-10-25
  • 网络出版日期:  2021-10-25
  • 刊出日期:  2024-02-27

目录

/

返回文章
返回