Elevated temperature tensile deformation behavior of powder metallurgy Fe−2Cu−0.5C steels
-
摘要:
使用Gleeble-3500型热模拟机对粉末冶金Fe−2Cu−0.5C钢在变形温度850~1000 ℃、应变速率0.1~10.0 s−1下进行高温拉伸测试,定量分析变形温度、应变速率对粉末冶金钢高温拉伸变形行为的影响。通过应力应变曲线计算了该粉末冶金钢高温拉伸过程的断裂功,建立了断裂功与变形温度、应变速率的数学模型。基于Hensel-Spittel模型和BP神经网络模型建立了该粉末冶金钢的本构模型,用于表征其高温拉伸流变行为,并将两种模型的预测结果进行比较。结果表明:所建立的断裂功模型能够描述该粉末冶金钢在不同变形温度和应变速率下的抗断裂能力。Hensel-Spittel本构模型的预测值与实验值的平均绝对相对误差为3.16%,决定系数为0.9743,而BP神经网络模型的预测值与实验值的平均绝对相对误差为0.17%,决定系数为0.9999,说明BP神经网络模型的预测能力更强,能更好地表征粉末冶金Fe−2Cu−0.5C钢的高温拉伸流变行为。
Abstract:The elevated temperature tensile tests of the powder metallurgy (P/M) Fe−2Cu−0.5C steels at the deformation temperatures of 850~1000 ℃ and strain rates of 0.1~10.0 s−1 were carried out by Gleeble-3500 thermal simulator. The effects of deformation temperature and strain rate on the elevated temperature tensile deformation behaviors of the P/M steels were quantitatively analyzed. The fracture work of the P/M steels during the elevated temperature tensile was calculated using the stress-strain curves. The mathematical model characterizing the relationship of fracture work, deformation temperature, and strain rate was established. The Hensel-Spittel model and BP neural network model were used to establish the constitutive equation of the P/M steels to characterize the flow behaviors during the elevated temperature tensile. The predicted results of the two models were compared. The results show that the fracture work model can describe the capacity of the P/M steels to resist fracture at different deformation temperatures and strain rates. The average absolute relative error between the predicted values of Hensel-Spittel constitutive model and the experimental values is 3.16%, and the coefficient of determination is 0.9743. While the average absolute relative error and the coefficient of determination between the predicted values of BP neural network model and the experimental values are 0.17% and 0.9999, respectively, indicating that the BP neural network model has the stronger predictive capacity and can characterize the elevated temperature tensile deformation behaviors of the P/M Fe−2Cu−0.5C steels better.
-
-
-
[1] 冯士超, 王艳红, 丁瑞锋. 粉末冶金在钢铁企业的应用及发展前景. 粉末冶金技术, 2015, 33(4): 296 DOI: 10.3969/j.issn.1001-3784.2015.04.011 Feng S C, Wang Y H, Ding R F. Application and prospect of powder metallurgy in steel enterprises. Powder Metall Technol, 2015, 33(4): 296 DOI: 10.3969/j.issn.1001-3784.2015.04.011
[2] Tan Z Q, Zhang Q, Guo X Y, et al. New development of powder metallurgy in automotive industry. J Cent South Univ, 2020, 27(6): 1611 DOI: 10.1007/s11771-020-4394-y
[3] Vasanthakumar P, Sekar K, Venkatesh K. Recent developments in powder metallurgy based aluminium alloy composite for aerospace applications. Mater Today, 2019, 18(7): 5400
[4] Shang F, Zhou H X, Qiao B, et al. Application of metal powder metallurgy technology in preparation of friction materials of the railway vehicles. Adv Mater Res, 2011, 1334(287-290): 2987
[5] 包崇玺, 曹阳, 易健宏, 等. 高密度铁基粉末冶金零件制备技术. 粉末冶金技术, 2022, 40(5): 458 Bao C X, Cao Y, Yi J H. et al. Preparation processes of high density iron-based powder metallurgy parts. Powder Metall Technol, 2011, 2022, 40(5): 458
[6] Guo B, Li Q, Wu H, et al. Influences of impact energy on the densification and mechanical properties of powder metallurgical Fe−C−Cu preforms during a powder-forged process. J Mater Res Technol, 2020, 9(6): 13914 DOI: 10.1016/j.jmrt.2020.09.084
[7] Rodriguez A K, Ayoub G A, Mansoor B, et al. Effect of strain rate and temperature on fracture of magnesium alloy AZ31B. Acta Mater, 2016, 112: 194 DOI: 10.1016/j.actamat.2016.03.061
[8] Guo Y, Zhou M X, Sun X D, et al. Effects of temperature and strain rate on the fracture behaviors of an Al−Zn−Mg−Cu alloy. Materials, 2018, 11(7): 1233 DOI: 10.3390/ma11071233
[9] He A, Xie G L, Zhang H L, et al. A modified Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel. Mater Des, 2014, 56: 122 DOI: 10.1016/j.matdes.2013.10.080
[10] Song B, Sanborn B. A modified Johnson-Cook model for dynamic response of metals with an explicit strain- and strain-rate-dependent adiabatic thermosoftening effect. J Dyn Behav Mater, 2019, 5(3): 212 DOI: 10.1007/s40870-019-00203-0
[11] 尹小燕, 骆静, 朱杰. 基于Hansel-Spittel模型的齿环用HAl61-4-3-1合金本构模型构建. 重庆理工大学学报(自然科学), 2021, 35(1): 111 Yin X Y, Luo J, Zhu J. Construction of high-temperature constitutive model of HAl61-4-3-1 alloy for synchronizer ring based on Hansel-Spittel mode. J Chongqing Univ Technol Nat Sci, 2021, 35(1): 111
[12] Meng B, Wan M, Wu X D, et al. Constitutive modeling for high-temperature tensile deformation behavior of pure molybdenum considering strain effects. Int J Refract Met Hard Mater, 2014, 45: 41 DOI: 10.1016/j.ijrmhm.2014.03.005
[13] Zhu H F, Liu J, Wu Y, et al. Hot deformation behavior and workability of in situ TiB2/7050Al composites fabricated by powder metallurgy. Materials, 2020, 13(23): 5319 DOI: 10.3390/ma13235319
[14] Zyguła K, Wojtaszek M, Śleboda T, et al. The analysis of hot deformation behavior of powder metallurgy Ti−10V−2Fe−3Al alloy using activation energy and Zener-Hollomon parameter. Procedia Manuf, 2020, 50: 546 DOI: 10.1016/j.promfg.2020.08.098
[15] Qu F S, Dong X F, Liu J Y, et al. The research on vacuum isothermal bloom for powder metallurgy V−5Cr−5Ti alloy guiding by the constitutive models and the error analysis. Int J Refract Met Hard Mater, 2018, 72: 349 DOI: 10.1016/j.ijrmhm.2018.01.007
[16] Wang J, Zhao G Q, Chen L, et al. A comparative study of several constitutive models for powder metallurgy tungsten at elevated temperature. Mater Des, 2016, 90: 91 DOI: 10.1016/j.matdes.2015.10.114
[17] 李强, 郭彪, 吴辉, 等. Fe−2Cu−0.5C粉末烧结钢高温拉伸流变应力及预测. 锻压技术, 2020, 45(8): 195 Li Q, Guo B, Wu H, et al. Flow stress and prediction on powder sintered steel Fe−2Cu−0.5C during high temperature tensile. Forg Stamp Technol, 2020, 45(8): 195
[18] Wu H, Wen S P, Huang H, et al. Hot deformation behavior and constitutive equation of a new type Al−Zn−Mg−Er−Zr alloy during isothermal compression. Mater Sci Eng A, 2016, 651: 415 DOI: 10.1016/j.msea.2015.10.122
[19] Wang H R, Wang W, Zhai R X, et al. Constitutive equations for describing the warm and hot deformation behavior of 20Cr2Ni4A alloy steel. Metals, 2020, 10(9): 1169 DOI: 10.3390/met10091169
[20] Qiao L, Deng Y, Liao M, et al. Modelling and prediction of thermal deformation behaviors in a pearlitic steel. Mater Today Commun, 2020, 25: 101134 DOI: 10.1016/j.mtcomm.2020.101134
[21] He J, Xiao Y, Liu J, et al. Model for predicting ductile fracture of SA508-3 steel undergoing hot forming. Mater Sci Technol, 2014, 30(10): 1239 DOI: 10.1179/1743284713Y.0000000443
[22] Xu R R, Li M Q, Li H. Kinetic analysis and strain-compensated constitutive models of Ti−42.9Al−4.6Nb−2Cr during isothermal compression. Prog Nat Sci Mater Int, 2020, 30(2): 260
[23] Xiao X, Liu G Q, Hu B F, et al. A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behaviour in 12Cr3WV steel. Comput Mater Sci, 2012, 62: 227 DOI: 10.1016/j.commatsci.2012.05.053
[24] 王天祥, 鲁世强, 王克鲁, 等. Ti60合金的流变应力行为及人工神经网络本构模型. 特种铸造及有色合金, 2020, 40(9): 1019 DOI: 10.15980/j.tzzz.2020.09.022 Wang T X, Lu S Q, Wang K L, et al. Flow stress behavior and constitutive model base on artificial neural network of Ti60 alloy. Spec Cast Nonferrous Alloys, 2020, 40(9): 1019 DOI: 10.15980/j.tzzz.2020.09.022
[25] 周峰, 王克鲁, 鲁世强, 等. Ti−22Al−24Nb−0.5Y合金流动行为及BP神经网络高温本构模型. 材料工程, 2019, 47(8): 141 Zhou F, Wang K L, Lu S Q, et al. Flow behavior and neural network high temperature constitutive model of Ti−22Al−24Nb−0.5Y alloy. J Mater Eng, 2019, 47(8): 141
[26] Murugesan M, Sajjad M, Jung D W. Microstructure evaluation and constitutive modeling of AISI-1045 steel for flow stress prediction under hot working conditions. Symmetry, 2020, 12(5): 782 DOI: 10.3390/sym12050782
-
期刊类型引用(3)
1. 张炜,萧伟健,袁传牛,张宁,陈荣昕. 基于三维离散元模型粉末压制中力链对阻塞行为的影响机制. 粉末冶金技术. 2024(04): 403-410+417 . 本站查看
2. 李化蓥,刘军,张超,张璐栋,王海陆,柯建忠. 基于离散元锥形零件冲击加载的相对密度. 粉末冶金技术. 2023(04): 322-329 . 本站查看
3. 张小粉,白瑀,李磊. 基于MARC的FC0205铁基粉末压制模拟技术. 粉末冶金工业. 2023(05): 81-88 . 百度学术
其他类型引用(0)