高级检索

PTFE/Cu材料动态压缩特性

汤雪志, 王志军, 张雪朋, 徐永杰

汤雪志, 王志军, 张雪朋, 徐永杰. PTFE/Cu材料动态压缩特性[J]. 粉末冶金技术, 2024, 42(2): 153-158, 164. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080008
引用本文: 汤雪志, 王志军, 张雪朋, 徐永杰. PTFE/Cu材料动态压缩特性[J]. 粉末冶金技术, 2024, 42(2): 153-158, 164. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080008
TANG Xuezhi, WANG Zhijun, ZHANG Xuepeng, XU Yongjie. Dynamic compressive behavior of PTFE/Cu composite materials[J]. Powder Metallurgy Technology, 2024, 42(2): 153-158, 164. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080008
Citation: TANG Xuezhi, WANG Zhijun, ZHANG Xuepeng, XU Yongjie. Dynamic compressive behavior of PTFE/Cu composite materials[J]. Powder Metallurgy Technology, 2024, 42(2): 153-158, 164. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080008

PTFE/Cu材料动态压缩特性

基金项目: 山西省高校科技创新项目(2019L602);山西省基础研究计划资助项目(2021690)
详细信息
    通讯作者:

    王志军: E-mail: wzj@nuc.edu.cn

  • 中图分类号: TF124.5

Dynamic compressive behavior of PTFE/Cu composite materials

More Information
  • 摘要:

    通过冷等静压和冷压烧结制备出六种不同密度的聚四氟乙烯(polytetrafluoroethylene,PTFE)/Cu复合材料,并采用霍普金森系统研究了密度和制备方法对PTFE/Cu动态力学性能影响。结果表明,冷压烧结试样在其烧结过程中发生纵向膨胀,导致密度降低,且试样表面生成一层金属膜;冷压烧结试样的动态压缩性能优于冷等静压试样;冷压烧结后的PTFE/Cu材料中PTFE晶体发育更好,对Cu颗粒包裹力更大,界面结合力更高,提升了冷压烧结PTFE/Cu材料的力学性能。

    Abstract:

    Six kinds of polytetrafluoroethylene (PTFE)/Cu materials with the different Cu contents were prepared by cold isostatic pressing and cold press sintering, respectively. The effects of density and preparation method on the dynamic mechanical properties of PTFE/Cu materials were studied by split Hopkinson bar testing (SHPB). The results show that the density of the cold press sintered specimen decreases due to the longitudinal expansion during the cold press sintering process, and a metal film is formed on the specimen surface. The dynamic mechanical properties of the cold press sintered specimen are better than that of the cold isostatic pressed specimen. The PTFE crystals in the cold press sintered PTFE/Cu materials are better developed, and the PTFE encapsulation force on the Cu particles is greater, resulting in the greater interfacial bonding force and improving the mechanical properties of the cold press sintered PTFE/Cu materials.

  • 图  1   PTFE/Cu试样宏观形貌

    Figure  1.   Macro morphology of the PTFE/Cu materials

    图  2   霍普金森实验系统示意图(a)和待测试样细节(b)

    Figure  2.   Schematic of the SHPB system device (a) and the details of specimens (b)

    图  3   PTFE/Cu试样X射线衍射图谱:(a)冷等静压试样;(b)冷压烧结试样

    Figure  3.   XRD results of the PTFE/Cu specimens: (a) cold isostatic pressed specimens; (b) cold press sintered specimens

    图  4   PTFE/Cu复合材料压缩试样典型宏观形貌(压缩后正反面):(a)A1;(b)A2;(c)A3;(d)B1;(e)B2;(f)B3

    Figure  4.   Typical macroappearance of the PTFE/Cu specimens after compress: (a) A1; (b) A2; (c) A3; (d) B1; (e) B2; (f) B3

    图  5   制备方法和密度对动态压缩曲线的影响:(a)应变速率-时间;(b)冷等静压试样真实应力-真实应变;(c)冷压烧结试样真实应力-真实应变

    Figure  5.   Influence of the preparation methods and density on the dynamic compression of the PTFE/Cu specimens: (a) strain rate and time; (b) relationship between the true stress and true strain of the cold isostatic pressed specimens; (c) relationship between the true stress and true strain of the cold press sintered specimens

    图  6   PTFE/Cu复合材料试样典型显微形貌:(a)A1;(b)A2;(c)A3;(d)B1;(e)B2;(f)B3

    Figure  6.   Typical SEM images of the PTFE/Cu specimens: (a) A1; (b) A2; (c) A3; (d) B1; (e) B2; (f) B3

    表  1   经冷等静压以及冷压后高温烧结制备的试样物理参数

    Table  1   Physical parameters of the PTFE/Cu specimens prepared by cold isostatic pressing and cold press sintering

    试样编号质量 / g直径 / mm高度 / mmCu质量分数 / %理论密度 / (g·cm−3)实测密度 / (g·cm−3)是否烧结
    A12.0212.026.1537.03.02.894
    A22.3712.026.1150.53.53.418
    A32.7112.026.1960.04.03.858
    B12.05 (2.02)11.87 (12.01)6.30 (5.93)37.03.02.940 (3.010)
    B22.41 (2.38)11.97 (12.03)6.40 (5.99)50.53.53.346 (3.495)
    B32.75 (2.73)12.11 (12.00)6.71 (6.27)60.04.03.558 (3.849)
    下载: 导出CSV

    表  2   制备方法和密度对PTFE/Cu材料动态压缩特性影响

    Table  2   Influence of the preparation methods and density on the dynamic compression properties of the PTFE/Cu specimens

    试样抗压强度 / MPa屈服强度 / MPa失效应变
    A134330.32
    A290570.29
    A376650.31
    B1154490.33
    B2232960.37
    B3146830.28
    下载: 导出CSV
  • [1] 解挺, 江凯, 丁亚. 填料粒径对Cu/PTFE复合材料摩擦学性能影响的数值模拟. 摩擦学学报, 2016, 36(1): 35

    Xie T, Jiang K, Ding Y. Numerical simulation of influence of filler size on tribological properties of Cu/PTFE composites. Tribology, 2016, 36(1): 35

    [2] 杨玉明, 李伟, 刘平, 等. 铜掺杂Ni−P−PTFE涂层的微观结构、耐蚀性和力学性能. 功能材料, 2018, 49(7): 7082

    Yang Y M, Li W, Liu P, et al. Microstructures corrosionresistance and mechanical properties of Ni−Cu−PTFE composite coatings. J Funct Mater, 2018, 49(7): 7082

    [3] 夏艳红. PTFE/Cu复合材料干/湿环境摩擦学性能研究[学位论文]. 秦皇岛: 燕山大学, 2016

    Xia Y H. Research on Tribology Properties of PTFE Filled with Cu Composite in Both Dry and Seawater Environment [Dissertation]. Qinhuangdao: Yanshan University, 2016

    [4]

    Wang L F, Dong Y, Tao J, et al. Study of the mechanisms of contact electrification and charge transfer between polytetrafluoroethylene and metals. J Phys D Appl Phys, 2020, 53: 285302 DOI: 10.1088/1361-6463/ab813e

    [5]

    Xie T, Xu Z X, Yan Z M, et al. Study on the friction and wear behaviors of Cu/PTFE self-lubricating composites. Appl Mech Mater, 2012, 130-134: 1466

    [6]

    Duan N Q, Gao Y H, Wang J Y, et al. The properties of the sintered copper powder liner. J Wuhan Univ Technol Mater Sci, 2014, 29(2): 269 DOI: 10.1007/s11595-014-0906-7

    [7]

    Xu Y J, Wang Z J, Wu G D, et al. Density effect of PTFE-copper powder metallurgy liner material on the perforation performance of shaped charge jets. Strength Mater, 2019, 51(4): 616 DOI: 10.1007/s11223-019-00108-2

    [8]

    Li Y L, Yin J P, Liu T X. Experimental study on mechanical properties of modified polytetrafluoroethylene. J Meas Sci Instrum, 2015, 6(4): 390

    [9] 刘同鑫. PTFE/Cu材料的力学性能研究及应用[学位论文]. 太原: 中北大学, 2015

    Liu T X. Study on the Mechanical Performance and Application of PTFE/Cu Materials [Dissertation]. Taiyuan: North of China University, 2015

    [10] 唐琦. 材料密度对改性PTFE毁伤元性能影响研究[学位论文]. 太原: 中北大学, 2017

    Tang Q. Study on the Influence of Density to the Performance of Modified PTFE Kill Elements [Dissertation]. Taiyuan: North of China University, 2017

    [11]

    Borkowski J, Wilk Z, Koslik P, et al. Application of sintered liners for explosively formed projectile charges. Int J Impact Eng, 2018, 118: 91 DOI: 10.1016/j.ijimpeng.2018.04.009

    [12] 刘义伦, 曾洋. 不同成型工艺下钕铁硼模压成型过程的力学行为分析. 粉末冶金技术, 2020, 38(4): 262

    Liu Y L, Zeng Y. Mechanical behavior analysis on the compression molding process of NdFeB by different molding technology. Powder Metall Technol, 2020, 38(4): 262

    [13]

    Tang X Z, Wang Z J, Yin J P, et al. Effect of the fabrication technique on compressive properties of Cu-PTFE composites. Adv Mater Sci Eng, 2021, 2021: 5518172

    [14]

    Brown Eric N, Dattelbaum Dana M. The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE). Polymer, 2005, 46(9): 3056 DOI: 10.1016/j.polymer.2005.01.061

    [15]

    Feng B, Fang X, Wang H X, et al. The effect of crystallinity on compressive properties of Al-PTFE. Polymers, 2016, 8(10): 356 DOI: 10.3390/polym8100356

    [16]

    Jordan Jennifer L, Siviour Clive R, Foley Jason R. Compressive properties of extruded polytetrafluoroethylene. Polymer, 2007, 48(14): 4184 DOI: 10.1016/j.polymer.2007.05.038

    [17] 张成功, 范景莲, 成会朝. W质量分数对Mo−W合金组织结构与力学性能的影响. 粉末冶金技术, 2020, 38(1): 18

    Zhang C G, Fan J L, Cheng H C. Effects of W content by mass on the microstructure and mechanical properties of Mo–W alloy. Powder Metall Technol, 2020, 38(1): 18

    [18] 李朝, 李楠, 柳学全, 等. WC质量分数对Ti(C0.7N0.3)基金属陶瓷组织和性能的影响. 粉末冶金技术, 2018, 36(2): 100

    Li C, Li N, Liu X Q, et al. Effect of WC mass fraction on the microstructure and properties of Ti(C0.7N0.3)-based cermets. Powder Metall Technol, 2018, 36(2): 100

    [19] 罗晓龙, 刘军, 胡仙平. 冲击加载条件下金属粉末的动态力学性能分析. 粉末冶金技术, 2018, 36(2): 111

    Luo X L, Liu J, Hu X P. Analysis on dynamic mechanics performance of metal powders by impact loading. Powder Metall Technol, 2018, 36(2): 111

    [20] 肖艳文, 徐峰悦, 郑元枫, 等. 冷压成型活性材料准静态压缩特性. 北京理工大学学报, 2017, 37(4): 337

    Xiao Y W, Xu F Y, Zheng Y F, et al. Quasi-static compression properties of cold isostatically pressed reactive materials. Trans Beijing Inst Technol, 2017, 37(4): 337

图(6)  /  表(2)
计量
  • 文章访问数:  839
  • HTML全文浏览量:  69
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2024-04-27

目录

    /

    返回文章
    返回