高级检索

碳纳米管增强铝基复合材料界面与晶粒调控研究进展

施展, 马凤仓, 谭占秋, 范根莲, 李志强

施展, 马凤仓, 谭占秋, 范根莲, 李志强. 碳纳米管增强铝基复合材料界面与晶粒调控研究进展[J]. 粉末冶金技术, 2024, 42(1): 14-28. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090008
引用本文: 施展, 马凤仓, 谭占秋, 范根莲, 李志强. 碳纳米管增强铝基复合材料界面与晶粒调控研究进展[J]. 粉末冶金技术, 2024, 42(1): 14-28. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090008
SHI Zhan, MA Fengcang, TAN Zhanqiu, FAN Genlian, LI Zhiqiang. Research progress on the interface and grain control in carbon nanotube reinforced aluminum matrix composites[J]. Powder Metallurgy Technology, 2024, 42(1): 14-28. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090008
Citation: SHI Zhan, MA Fengcang, TAN Zhanqiu, FAN Genlian, LI Zhiqiang. Research progress on the interface and grain control in carbon nanotube reinforced aluminum matrix composites[J]. Powder Metallurgy Technology, 2024, 42(1): 14-28. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090008

碳纳米管增强铝基复合材料界面与晶粒调控研究进展

详细信息
    通讯作者:

    施展: E-mail: 417723503@qq.com

  • 中图分类号: TF123; TB331

Research progress on the interface and grain control in carbon nanotube reinforced aluminum matrix composites

More Information
  • 摘要:

    随着碳纳米管增强铝基复合材料制备工艺的不断完善,碳纳米管的难分散问题被妥善解决,复合材料的强度有所提高,但复合材料的高模量、高强度没有得到充分利用,并出现“强度–塑性”倒置现象。本文总结了近年来对碳/铝复合材料界面结构、晶粒结构与复合构型设计的调控手段,讨论了界面结构强度对碳纳米管载荷传递效率的影响,分析了出现倒置现象的原因,并针对复合材料塑韧性差的问题,提出了调控思路,为制备强度高、韧性强的碳纳米管增强铝基复合材料提供依据。

    Abstract:

    With the continuous improvement on the preparation process of the carbon nanotube-reinforced aluminum matrix composites, the difficult dispersion problem of the carbon nanotubes has been properly solved, and the composite strength has been improved, but the high modulus and high strength of the composites have not been fully utilized, and the “strength-plastic” inversion phenomenon has appeared. The adjustment methods of interface structure, grain structure, and composite configuration design of the carbon/aluminum composites in recent years were summarized in this paper, the influence of interface structure strength on the load transfer efficiency of the carbon nanotubes was discussed, the causes of inversion phenomenon were analyzed, and the control ideas were proposed to solve the problem of poor plastic toughness of the composites, providing the basis for preparing the carbon nanotube-reinforced aluminum matrix composites with high strength and toughness.

  • 铜具有极高的热导率,被广泛应用于快速热交换领域。铜合金被广泛应用于航天、核反应及冶金等需要先进主动冷却的工业领域[13]。铜合金的导热导电性能和力学性能是一对矛盾特性,高强高导铜合金的研究目标是在保持较高导热性能的同时尽可能提高力学性能[45]

    目前各国研究和开发的高强高导铜合金主要包括Cu–Fe系、Cu–Ni系、Cu–Nb系和Cu–Cr系合金。Cu–Ni–Si合金因具有高强度和高导电性能在引线框架和连接器等电气器件上被广泛应用[68],Cu–Cr–Nb合金因优异的力学性能和热导性而被广泛关注[2,910]。冷却水套需要适中的热导率来避免局部冷却水过热气化,产生“气锤”[11]。为了满足冷却水套的制备和使用要求,本课题组针对铜合金做了较多研究[3,1214]。研究表明,Cu–Ni–Nb合金具有较高熔点、适中热导率及较强力学性能,在热交换材料领域具有广泛的应用前景。张俊哲等[13]采用真空电弧熔炼法研究了Ni质量分数20%、30%、40%和Nb质量分数1%、3%、5%、10%条件下Cu–Ni–Nb合金的组织及性能,通过对比不同成分的Cu–Ni–Nb合金,得出Cu–30Ni–5Nb合金熔点较高,热导率适中,比较适宜冷却水套的制备。铜合金的制备方法[15]包括熔铸法、粉末冶金法和原位合成法等。张俊哲等[13]通过真空电弧熔炼法制备Cu–Ni–Nb合金,结果出现铜元素烧损及组织成分偏析等问题。粉末冶金法成形温度较低,可以避免铜元素的烧损,同时可以有效改善微观组织,实现成分均匀分布。

    本文按一定比例将电解铜粉、镍粉和铌粉混合,采用真空热压法制备Cu–30Ni–5Nb合金,研究热压温度对合金组织、相对密度、熔点及热导率的影响,获得制备具有较高熔点、适中热导率及较高力学性能的铜合金的最优热压温度。

    实验材料为电解铜粉(纯度99.99%)、镍粉(纯度99.9%)和铌粉(纯度99.9%),粒径均为300目。按质量分数65%Cu、30%Ni和5%Nb将粉末混合,放入XQM-2A型行星球磨机中进行球磨。球磨参数为球料质量比6:1,球磨时间20 h,转速300 r·min−1。将球磨后的Cu–30Ni–5Nb粉末放入石墨模具中,在ZM-44-12Y型真空热压炉中进行烧结,烧结压力为25 MPa,热压温度分别为800、850、875、900和950 ℃,保温时间为2 h,保温结束后随炉冷却得到Cu–30Ni–5Nb合金。

    在热压烧结Cu–30Ni–5Nb合金上切取金相试样,腐蚀剂为FeCl3(5 g)+ HCl(15 mL)+ H2O(100 mL)。采用排水法测定Cu–30Ni–5Nb合金实际密度,并计算相对密度。通过Nova Nano 450型扫描电镜(scanning electron microscope,SEM)观察Cu–30Ni–5Nb合金的微观组织。利用BrukerD8型X射线衍射仪(X-ray diffraction,XRD)确定Cu–30Ni–5Nb合金的物相组成,并通过Jade6.5软件进行数据分析,计算第二相质量分数,根据布拉格衍射条件计算合金的晶面间距,如式(1)所示。

    $$ 2d\sin \theta = n\lambda $$ (1)

    式中:d为晶面间距,θ为X射线与晶面的夹角,n为衍射级数,λ为X射线波长。

    利用STA449F3型综合热分析仪获得合金的示差扫描量热(differential scanning calorimeter,DSC)曲线,其吸热峰曲线和放热峰曲线的公切线交点即为合金的熔点。通过LFA447/2-2型激光导热仪测量合金的比热容及热扩散系数,根据式(2)计算出合金的热导率。

    $$ \lambda = \alpha \cdot \rho \cdot {C_{\text{P}}} $$ (2)

    式中:λ为合金热导率,W·m−1·K−1α为热扩散系数,mm2·s−1ρ为合金密度,g·cm−3Cp为合金比热容,J·g−1·K−1

    图1为不同热压温度制备Cu–30Ni–5Nb合金的X射线衍射图谱。由图可知,基体相为Cu0.81Ni0.19,第二相为NbNi3,没有检测到其他相存在。将各合金X射线衍射图谱归一化后,对比Cu0.81Ni0.19相衍射峰位置、晶面间距和第二相质量分数,结果如表1所示,随着热压温度的升高,Cu0.81Ni0.19相衍射峰位值变大且晶面间距减小,第二相质量分数升高,表明CuNi固溶体中的Ni原子向外扩散增多。热压温度为800 ℃时,第二相质量分数为5.2%;热压温度为950 ℃时,第二相质量分数增加到8.9 %。

    图  1  不同热压温度制备Cu–30Ni–5Nb合金的X射线衍射图谱
    Figure  1.  XRD patterns of the Cu–30Ni–5Nb alloys prepared at different hot-pressing temperatures
    表  1  不同热压温度下Cu0.81Ni0.19相衍射峰位置、晶面间距和第二相质量分数
    Table  1.  Diffraction peak position of Cu0.81Ni0.19 phase, the crystal plane spacing, and the second phase mass fraction at different hot-pressing temperatures
    热压温度 /
    Cu0.81Ni0.19相衍射峰
    位置,2θ / (°)
    晶面间距
    d / nm
    第二相质量
    分数 / %
    80043.7310.206845.2
    85043.7380.206805.7
    87543.7480.206765.9
    90043.7570.206716.3
    95043.7690.206678.9
    下载: 导出CSV 
    | 显示表格

    图2为不同热压温度制备Cu–30Ni–5Nb合金的扫描电子显微组织形貌。从图中可知,Cu–30Ni–5Nb合金整体组织较为致密,第二相形态大部分为层片状(图2(f)),是由球磨过程中球与粉末的碰撞导致[16]。第二相颗粒大部分在晶界处析出,少量在晶粒内析出,且随着温度的升高出现了偏聚现象。热压温度较低时,试样中存在较多的气孔且基本分布于晶界处,经875 ℃热压后试样中气孔基本消失(图2(c))。机械合金化形成的CuNiNb固溶体经热压后析出的Ni原子与Nb原子结合形成NbNi3相。同时,各试样存在压制压力导致的应变条痕(孪晶),有利于细小弥散的NbNi3相析出。

    图  2  不同热压温度制备Cu–30Ni–5Nb合金的扫描电子显微形貌:(a)800 ℃;(b)850 ℃;(c)875 ℃;(d)900 ℃;(e)950 ℃;(f)875 ℃(缩小图)
    Figure  2.  SEM images of the Cu–30Ni–5Nb alloys prepared at different hot-pressing temperatures: (a) 800 ℃; (b) 850 ℃; (c) 875 ℃; (d) 900 ℃; (e) 950 ℃; (f) 875 ℃ (low magnification image)

    表2为不同热压温度制备Cu–30Ni–5Nb合金的相对密度、熔点及热导率。热压温度为800 ℃时,合金组织中存在较多气孔(图2(a)),相对密度较低(93.59%);随着热压温度的升高,提供给粉末颗粒重排、塑性变形、原子扩散等晶界迁移的动力增加,促使烧结体内部气体排出,使合金致密化程度升高。当热压温度为900 ℃时,合金相对密度达到最大(99.13%),但当热压温度达到950 ℃时,其相对密度略微减小。这是由于热压温度升至950 ℃时,充足的烧结驱动力使晶界迁移冲破第二相和气孔“钉扎”作用的束缚,导致晶粒中包含少量第二相颗粒与气孔(见图2(e)),引起合金的相对密度降低。

    表  2  不同热压温度制备Cu–30Ni–5Nb合金的性能
    Table  2.  Properties of the Cu–30Ni–5Nb alloys prepared at different hot-pressing temperatures
    热压温度 / ℃相对密度 / %热导率 / (W·m−1·K−1)熔点 / ℃
    80093.5926.721190.93
    85096.5728.161183.65
    87598.6629.541180.86
    90099.1330.651178.92
    95098.4229.071182.42
    下载: 导出CSV 
    | 显示表格

    图3为不同热压温度制备Cu–30Ni–5Nb合金的熔点及热导率变化曲线。可以看出,合金的熔点和热导率的变化呈相反趋势。随着热压温度的升高,原子扩散速度增加,基体相的成分发生微小偏移,导致合金的熔点逐渐下降,在900 ℃时最低为1178.92 ℃;随着热压温度的继续升高,合金的熔点随后上升,这是由于能量的增加使得第二相质量分数(见表1)从6.3%(900 ℃)突增至8.9%(950 ℃),而第二相熔点高于基体相,故出现熔点上升现象。随着热压温度的升高,Cu–Ni固溶体中的Ni原子趋于均匀扩散,表现为与Nb原子结合成的第二相(NbNi3)逐渐增加,使得合金的热导率逐渐上升,在900 ℃时有最大值30.65 W·m−1·K−1,热压温度超过900 ℃以后,合金的热导率稍有减小,这是由于过高的热压温度导致基体的网状结构变形,削弱了基体相与第二相的联系,造成合金导热性能下降。

    图  3  不同热压温度制备Cu–30Ni–5Nb合金的熔点及热导率
    Figure  3.  Melting point and thermal conductivity of the Cu–30Ni–5Nb alloys prepared at different hot-pressing temperatures

    结合表2图3中不同热压温度下Cu–30Ni–5Nb合金的性能及变化趋势,发现在875 ℃热压后,合金的热导率和相对密度变化较小,性能趋于平稳。合金的相对密度、热导率与熔点均在900 ℃出现拐点,结合图2(e)中少量第二相颗粒包含在晶粒内,说明900 ℃热压后合金的性能发生异常。因此,在热压温度为875 ℃时Cu–30Ni–5Nb合金具有较好的综合性能。采用真空热压法制备的Cu–30Ni–5Nb合金熔点(1183.65 ℃)高于采用真空电弧熔炼法[13]制备的合金熔点(1172 ℃),但热导率变化不大。

    对热压温度为875 ℃制备的Cu–30Ni–5Nb合金进行了拉伸实验,得出其屈服强度(σ0.2)为355.74 MPa,伸长率为6.18%,较纯铜屈服强度(200 MPa)增加了77.9%。这是由于Cu、Ni元素可无限互溶,通过添加Ni元素,起到固溶强化作用。通过控制热压温度,抑制晶粒长大,达到细晶强化效果,使得铜合金在室温下具有较高的强度。图4为875 ℃热压制备Cu–30Ni–5Nb合金的拉伸断口形貌图。如图4(a)所示,合金少数区域出现“二次裂纹”,是由于拉伸过程中基体相(Cu0.81Ni0.19)与第二相(NbNi3)拉伸模量差异所致。如图4(b)所示,基体相中存在大量韧窝,且大韧窝周围分布有一些小韧窝,同时在韧窝内发现细小的第二相颗粒。如图4(c)所示,层片状的第二相主要发生晶间断裂,降低了铜合金的塑性。

    图  4  875 ℃热压烧结制备的Cu–30Ni–5Nb合金拉伸断口形貌:(a)二次裂纹;(b)韧窝;(c)晶间断裂
    Figure  4.  Tensile fracture morphology of the Cu–30Ni–5Nb alloys prepared by hot pressed sintering at 875 ℃: (a) secondary crack; (b) dimples; (c) trans-granular fracture

    (1)在800~950 ℃热压温度范围内,Cu–30Ni–5Nb合金的熔点先降低随后升高,900 ℃热压时,铜合金的熔点最低(1178.92 ℃);铜合金的热导率先增大随后减小,900 ℃热压时,铜合金的热导率最大(30.65 W·m−1·K−1)。

    (2)热压温度为875 ℃时,Cu–30Ni–5Nb合金具有较好的综合性能,相对密度为98.66%,熔点为1180.86 ℃,热导率为29.54 W·m−1·K−1,且合金屈服强度达到355.74 MPa,符合冷却水套的性能要求。

  • 图  1   基体–增强体界面结构示意图:(a)I型;(b)II型;(c)III型

    Figure  1.   Schematic diagrams of the interface structure between the matrix and reinforcements: (a) type I; (b) type II; (c) type III

    图  2   不同烧结温度CNTs/Al复合材料透射电子显微形貌[9]:(a)~(c)800 K;(d)~(f)900 K

    Figure  2.   Transmission electron microscope (TEM) images of the CNTs/Al composites at different sintering temperatures[9]: (a)~(c) 800 K; (d)~(f) 900 K

    图  3   原始碳纳米管和包覆SiC碳纳米管的滴铝接触角测量(真空、800 ℃)[10]:(a)光学形貌;(b)原始碳纳米管滴铝接触角;(c)包覆SiC碳纳米管滴铝接触角

    Figure  3.   Contact angle measurement of the pristine CNTs pellet and SiC/CNTs pellet after the sessile drop of aluminum at 800 ℃ in vacuum[10]: (a) optical image; (b) contact angle measurement of the pristine CNTs pellet; (c) contact angle measurement of the SiC/CNTs pellet

    图  4   不同强化相铝基纳米复合材料拉伸试验断口形貌:(a)、(b)碳纳米管;(c)、(d)涂覆不同厚度SiC的碳纳米管[11]

    Figure  4.   Tensile fracture morphology of the aluminum matrix nanocomposites with different reinforcements: (a), (b) CNTs; (c), (d) CNTs decorated with different thickness of SiC transition layer[11]

    图  5   碳纳米管增强铝基复合材料断口形貌[16]:(a)、(c)CNTs/Al–Cu;(b)、(d)CNTs/Al–Cu–Mg

    Figure  5.   Fractography images of the CNTs/Al composites[16]: (a), (c) CNTs/Al–Cu; (b), (d) CNTs/Al–Cu–Mg

    图  6   CNTs/Al复合材料界面处原位引入Al2O3纳米粒子透射电子显微形貌[17]

    Figure  6.   TEM images of the in situ introduced Al2O3 nanoparticles at the interface of CNTs/Al composites[17]

    图  7   碳纳米管在硼酸溶液中的吸附机理(a),CNTs@H3BO3混合粉末扫描电子显微形貌及能谱分析(b)~(b3)以及对选定区域元素的成分分析(c)[24]

    Figure  7.   Mechanisms of the CNTs adsorption in boric acid solution (a), the scanning electron microscope (SEM) image and the corresponding energy spectrum analysis of the CNTs@H3BO3 hybrid powders (b)~(b3), and the element component analysis in the selected area (c)[24]

    图  8   CNTs/Al复合粉末制备工艺图(a);碳纳米管在聚乙烯醇表面的吸附机理示意图(b);聚乙烯醇膜的形成(c)以及碳纳米管的吸附(d)[26]

    Figure  8.   Fabrication procedures for the CNTs/Al composite powders (a), the schematic of the CNTs adsorption mechanism on the PVA surface (b), PVA membrane formation (c), and the CNTs adsorption (d)[26]

    图  9   沉积薄膜表面扫描电子显微形貌:(a)碳纳米管;(b)350 ℃沉积在碳纳米管上的SiO2;(c)350 ℃沉积在碳纳米管上的TiN[43]

    Figure  9.   SEM images of the deposited film surfaces: (a) CNTs; (b) SiO2 deposited on CNTs at 350 ℃; (c) TiN deposited on CNTs at 350 ℃[43]

    图  10   原料、碳纳米管–硅粉混合物及CNTs/SiC复合粉末显微形貌[46]:(a)纳米硅粉;(b)碳纳米管;(c)CNTs–Si粉末混合物;(d)~(f)热处理后5CNTs–1Si、5CNTs–3SiC和1CNTs–1SiC复合粉末;(g)~(i)1CNTs–1SiC复合粉末显微结构及相应区域的碳、硅元素分布

    Figure  10.   SEM images of the raw materials, CNTs–Si powder mixtures, and CNTs/SiC composite powders[46]: (a) raw Si nano-powders; (b) raw CNTs powders; (c) CNTs–Si powder mixtures; (d)~(f) 5CNTs–1Si, 5CNTs–3SiC and 1CNTs–1SiC composite powders after heat treatment; (g)~(i) microstructure of the 1CNTs–1SiC composite powders and the corresponding carbon and Si element distribution

    图  11   采用分子水平混合技术制备Cu包覆碳纳米管的透射电子显微形貌[32]:(a)未包覆Cu的碳纳米管;(b)包覆Cu的碳纳米管;(c)Cu包覆碳纳米管放大图

    Figure  11.   TEM images of the Cu-coated carbon nanotubes by MLM[32]: (a) Cu-uncoated CNTs; (b) Cu-coated CNTs; (c) magnified view of Cu-uncoated CNTs

    图  12   H2SO4–H2O2((a)、(b))和HNO3–H2SO4((c)、(d))氧化碳纳米管增强Al复合材料透射电镜和高分辨率透射电镜显微形貌[24]

    Figure  12.   TEM and high resolution transmission electron microscope (HRTEM) images of the CNTs/Al composites oxidized by H2SO4–H2O2 ((a), (b)) and HNO3–H2SO4 ((c), (d))[24]

    图  13   Al–γ-Al2O3界面高分辨透射电镜形貌(a)和快速傅立叶变换图像(b)[53]

    Figure  13.   HRTEM image (a) and the inverse fast Flourier transformation image (b) of the Al–γ-Al2O3 interfaces[53]

    图  14   CNTs/Al复合材料晶粒取向电子背向散射衍射分析[9]:(a)烧结温度800 K;(b)烧结温度900 K

    Figure  14.   Grain orientation analysis of the CNTs/Al composites from electron back-scattered diffraction (EBSD)[9]: (a) sintered at 800 K; (b) sintered at 900 K

    图  15   具有非均相和均相CNTs/2009Al复合材料制备工艺示意图[58]

    Figure  15.   Fabrication process schematic of the CNTs/2009Al composites with the heterogeneous and uniform structure[58]

    图  16   不同晶粒结构CNTs/Al–Cu–Mg复合材料典型工程应力–应变曲线(a)和三峰晶粒结构CNTs/Al–Cu–Mg复合材料屈服强度–延伸率关系(b)[28,57-68]

    Figure  16.   Representative engineering stress-strain curves of the CNTs/Al–Cu–Mg composites with different grain structures (a) and the relationship between the yield strength and elongation of the CNTs/Al–Cu–Mg composites with different grain structures (b)[28,57-68]

    表  1   含有质量分数1.5%碳纳米管的CNTs/Al复合材料拉伸性能[52]

    Table  1   Tensile properties of the CNTs/Al composites with 1.5% CNTs (mass fraction)[52]

    材料球磨方式最终拉伸强度 / MPa均匀延伸率 / %平均晶粒尺寸 / nm总延伸率 / %
    CNTs/Al低速球磨367±23.2±0.13376.3±0.4
    变速球磨376±33.9±0.230812.4±1.3
    高速球磨408±11.5±0.02174.0±0.3
    下载: 导出CSV

    表  2   Al及CNTs/Al复合材料的晶粒结构参数和力学性能[57]

    Table  2   Structural parameters and mechanical properties of the Al and the CNTs/Al composites[57]

    材料(体积分数)平均晶粒宽度 / nm平均晶粒直径 / nm抗拉强度 / MPa均匀延伸率 / %断裂延伸率 / %
    Al(350 ℃)443881233±25.3±0.217.4±0.9
    Al(320 ℃)326510284±13.5±0.313.7±0.8
    Al(300 ℃)295463298±32.5±0.311.6±1.3
    1%CNTs/Al(350 ℃)438832269±65.2±0.315.3±0.8
    2%CNTs/Al(350 ℃)426756315±25.1±0.211.1±0.6
    1%CNTs/Al(320 ℃)308573315±53.2±0.312.6±1.1
    2%CNTs/Al(350 ℃)297435355±23.6±0.114.8±1.0
    下载: 导出CSV
  • [1] 聂俊辉, 魏少华, 贾成厂, 等. 热管理领域用碳纳米管/铝复合材料的组织与热学性能研究. 粉末冶金技术, 2014, 32(5): 372

    Nie J H, Wei S H, Jia C C, et al. Microstructures and thermal properties of carbon nanotube reinforced aluminum matrix composites for thermal management applications. Powder Metall Technol, 2014, 32(5): 372

    [2]

    Clyne T W, Withers P J. An Introduction to Metal Matrix Composites. New York: Cambridge University Press, 1993

    [3] 俞子贇. 碳纳米管增强铝基复合材料界面调控及力学性能研究[学位论文]. 上海: 上海交通大学, 2019

    Yu Z Y. Interface Tailoring and Mechanical Performance of Carbon Nanotube Reinforced Aluminum Matrix Composites [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2019

    [4] 孔亚茹, 郭强, 张荻. 颗粒增强铝基复合材料界面性能的研究. 材料导报, 2015, 29(5): 34

    Kong Y R, Guo Q, Zhang D. Review on interfacial properties of particle-reinforced aluminum matrix composites. Mater Rev, 2015, 29(5): 34

    [5] 姚争争, 童伟, 陈名海, 等. 碳纳米管增强铝基复合材料界面控制研究进展. 材料导报, 2016, 30(3): 119

    Yao Z Z, Tong W, Chen M H, et al. Controlling the interface reaction in carbon nanotubes-reinforced aluminum composite: a review. Mater Rev, 2016, 30(3): 119

    [6]

    Kim W J, Yu Y J. The effect of the addition of multiwalled carbon nanotubes on the uniform distribution of TiC nanoparticles in aluminum nanocomposites. Scr Mater, 2014, 72-73: 25 DOI: 10.1016/j.scriptamat.2013.10.008

    [7]

    Dhandapani S, Rajmohan T, Palanikumar K, et al. Synthesis and characterization of dual particle (MWCT+B4C) reinforced sintered hybrid aluminum matrix composites. Part Sci Technol, 2016, 34(3): 255 DOI: 10.1080/02726351.2015.1069431

    [8]

    Kim H H, Babu J S S, Kang C G. Hot extrusion of A356 aluminum metal matrix composite with carbon nanotube/Al2O3 hybrid reinforcement. Metall Mater Trans A, 2014, 45: 2636 DOI: 10.1007/s11661-014-2185-5

    [9]

    Chen B, Kondoh K, Imai H, et al. Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions. Scr Mater, 2016, 113: 158 DOI: 10.1016/j.scriptamat.2015.11.011

    [10]

    So K P, Jeong J C, Park J G, et al. SiC formation on carbon nanotube surface for improving wettability with aluminum. Compos Sci Technol, 2013, 74: 6 DOI: 10.1016/j.compscitech.2012.09.014

    [11]

    Zhang X, Li S F, Pan B, et al. Regulation of interface between carbon nanotubes-aluminum and its strengthening effect in CNTs reinforced aluminum matrix nanocomposites. Carbon, 2019, 155: 686 DOI: 10.1016/j.carbon.2019.09.016

    [12]

    Kang K, Bae G, Kim B, et al. Thermally activated reactions of multi-walled carbon nanotubes reinforced aluminum matrix composite during the thermal spray consolidation. Mater Chem Phys, 2012, 133(1): 495 DOI: 10.1016/j.matchemphys.2012.01.071

    [13]

    Zhang J, Lu H, Sun Y, et al. Humidity effects on anisotropic nanofriction behaviors of aligned carbon nanotube carpets. ACS Appl Mater Interfaces, 2013, 5(19): 9247 DOI: 10.1021/am403981a

    [14]

    Bakshi S R, Agarwal A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon, 2011, 49: 533 DOI: 10.1016/j.carbon.2010.09.054

    [15]

    Chen B, Shen J, Ye X, et al. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon, 2017, 114: 198 DOI: 10.1016/j.carbon.2016.12.013

    [16]

    Yuan C, Zhang Z M, Tan Z Q, et al. Enhanced ductility by Mg addition in the CNT/Al-Cu composites via flake powder metallurgy. Mater Today Commun, 2021, 26: 101854 DOI: 10.1016/j.mtcomm.2020.101854

    [17]

    Chen B, Kondoh K, Umeda J, et al. Interfacial in-situ Al2O3 nanoparticles enhance load transfer in carbon nanotube (CNT)-reinforced aluminum matrix composites. J Alloys Compd, 2019, 789: 25 DOI: 10.1016/j.jallcom.2019.03.063

    [18] 鄢来朋, 谭占秋, 熊定邦, 等. 碳纳米管/铝复合材料界面调控研究进展. 中国材料进展, 2016, 35(12): 943

    Yan L P, Tan Z Q, Xiong D B, et al. Research progress on the interface control in CNT/Al composites. Mater China, 2016, 35(12): 943

    [19] 范同祥, 刘悦, 杨昆明, 等. 碳/金属复合材料界面结构优化及界面作用机制的研究进展. 金属学报, 2019, 55(1): 16

    Fan T X, Liu Y, Yang K M, et al. Recent progress on interface structure optimization and their influencing mechanism of carbon reinforced metal matrix composites. Acta Metall Sinica, 2019, 55(1): 16

    [20] 李景瑞, 蒋小松, 刘晚霞, 等. 碳纳米管增强铝基复合材料的界面特性及增强机理研究进展. 材料导报, 2015, 29(1): 31

    Li J R, Jiang X S, Liu W X, et al. Research progress on interface characteristics and strengthening mechanism in carbon nanotube reinforced aluminum matrix composites. Mater Rev, 2015, 29(1): 31

    [21] 胡银生, 余欢, 徐志锋, 等. 增强纤维对连续纤维增强铝基复合材料界面和力学性能的影响. 中国有色金属学报, 2019, 29(10): 2245

    Hu Y S, Yu H, Xu Z F, et al. Effect of reinforcing fiber on interface and mechanical properties of fiber reinforced aluminum matrix composites. Chin J Nonferrous Met, 2019, 29(10): 2245

    [22]

    Guo B S, Zhang X M, Cen X, et al. Enhanced mechanical properties of aluminum based composites reinforced by chemically oxidized carbon nanotubes. Carbon, 2018, 139: 459 DOI: 10.1016/j.carbon.2018.07.026

    [23]

    Zhou W W, Bang S, Kurita H, et al. Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon, 2016, 96: 919 DOI: 10.1016/j.carbon.2015.10.016

    [24]

    Shan Y C, Pu B W, Liu E Z, et al. In-situ synthesis of CNTs@Al2O3 wrapped structure in aluminum matrix composites with balanced strength and toughness. Mater Sci Eng A, 2020, 797: 140058 DOI: 10.1016/j.msea.2020.140058

    [25]

    Jiang L, Fan G L, Li Z Q, et al. An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon, 2011, 49: 1965 DOI: 10.1016/j.carbon.2011.01.021

    [26]

    Deng C F, Zhang X X, Wang D Z, et al. Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater Lett, 2007, 61: 1725 DOI: 10.1016/j.matlet.2006.07.119

    [27]

    Yang H Y, Yue X, Wang Z, et al. Strengthening mechanism of TiC/Al composites using Al–Ti–C/CNTs with doping alloying elements (Mg, Zn and Cu). J Mater Res Technol, 2020, 9(3): 6475 DOI: 10.1016/j.jmrt.2020.04.033

    [28]

    Ghosh G, Sidpara A, Bandyopadhyay P P. Magnetorheological finishing of WC–Co coating using iron-B4C–CNT composite abrasives. Tribol Int, 2021, 155: 106807 DOI: 10.1016/j.triboint.2020.106807

    [29]

    Sethi J, Jena S, Das S, et al. Synthesis and properties of Al–AlN–CuCNT and Al–Y2W3O12–CuCNT hybrid composites. Mater Sci Eng A, 2021, 810: 140919 DOI: 10.1016/j.msea.2021.140919

    [30]

    Mtz-Enriquez A I, Gomez-Solis C, Oliva A I, et al. Enhancing the voltage and discharge times of graphene supercapacitors depositing a CNT/V2O5 layer on their electrodes. Mater Chem Phys, 2020, 244: 122698 DOI: 10.1016/j.matchemphys.2020.122698

    [31]

    Isari A A, Mehregan M, Mehregan S, et al. Sono-photocatalytic degradation of tetracycline and pharmaceutical wastewater using WO3/CNT heterojunction nanocomposite under US and visible light irradiations: A novel hybrid system. J Hazard Mater, 2020, 390: 122050 DOI: 10.1016/j.jhazmat.2020.122050

    [32]

    Jafar M R, Nagesh D S. Effect of process control agent and mechanical milling on the embedment and uniform dispersion of CNTs and B4C in aluminum matrix. Mater Today Proceed, 2021, 47: 3765 DOI: 10.1016/j.matpr.2021.02.573

    [33]

    Liu L, Li S F, Zhang X, et al. Syntheses microstructure evolution and performance of strength-ductility matched aluminum matrix composites reinforced by nano SiC-cladded CNTs. Mater Sci Eng A, 2021, 824: 141784 DOI: 10.1016/j.msea.2021.141784

    [34]

    Chu K, Wang J, Liu Y P, et al. Creating defects on graphene basal-plane toward interface optimization of graphene/CuCr composites. Carbon, 2019, 143: 85 DOI: 10.1016/j.carbon.2018.10.095

    [35]

    Liu G, Pan Z C, Zhang B, et al. A novel TiN coated CNTs nanocomposite CNTs@TiN supported Pt electrocatalyst with enhanced catalytic activity and durability for methanol oxidation reaction. Int J Hydrogen Energy, 2017, 42(17): 12467 DOI: 10.1016/j.ijhydene.2017.03.181

    [36]

    Tran T Q, Lee J K Y, Chinnappan A, et al. Strong, lightweight, and highly conductive CNT/Au/Cu wires from sputtering and electroplating methods. J Mater Sci Technol, 2020, 40: 99 DOI: 10.1016/j.jmst.2019.08.033

    [37]

    Zhao Q, Tan S L, Xie M, et al. A study on the CNTs-Ag composites prepared based on spark plasma sintering and improved electroless plating assisted by ultrasonic spray atomization. J Alloys Compd, 2018, 737: 31 DOI: 10.1016/j.jallcom.2017.12.066

    [38]

    Zhang Y P, Wang Q, Chen G, et al. Mechanical, tribological and corrosion physiognomies of CNT-Al metal matrix composite (MMC) coatings deposited by cold gas dynamic spray (CGDS) process. Surf Coat Technol, 2020, 403: 126380 DOI: 10.1016/j.surfcoat.2020.126380

    [39]

    Abdulameer S, Al-Sultani K F, Sh Majdi H. MWCNTs-YSZ coating deposited by plasma thermal spray on ICONEL 738 low carbon substrate. Mater Today Proceed, 2021, 60: 1241

    [40]

    Murugesan R, Gopal M, Murali G. Effect of Cu, Ni addition on the CNTs dispersion, wear and thermal expansion behavior of Al-CNT composites by molecular mixing and mechanical alloying. Appl Surf Sci, 2019, 495: 143542 DOI: 10.1016/j.apsusc.2019.143542

    [41]

    Gao B, Chen G Z, Puma G L. Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl Catal B, 2009, 89(3-4): 503 DOI: 10.1016/j.apcatb.2009.01.009

    [42]

    Xi K, Li J, Wang Y W, et al. Thermal insulation and char layer mechanical properties of a novel ethylene propylene diene monomer composite reinforced with carbon nanotubes coated via chemical vapour deposition. Compos Sci Technol, 2021, 201: 108537 DOI: 10.1016/j.compscitech.2020.108537

    [43]

    Krishna A, Evangeline T G, Aravinda L S, et al. Synthesis and thermal simulations of novel encapsulated CNT multifunctional thin-film based nanomaterial of SiO2-CNT and TiN-CNT by PVD and PECVD techniques for thermal applications. Diamond Relat Mater, 2020, 109: 108029 DOI: 10.1016/j.diamond.2020.108029

    [44]

    Guerra-Nuñez C, Putz B, Savu R, et al. The nucleation, radial growth, and bonding of TiO2 deposited via atomic layer deposition on single-walled carbon nanotubes. Appl Surf Sci, 2021, 555: 149662 DOI: 10.1016/j.apsusc.2021.149662

    [45] 王雷, 尹华, 徐润, 等. 原位碳纳米管/铝基复合材料的制备与力学性能. 粉末冶金材料科学与工程, 2019, 24(1): 63 DOI: 10.3969/j.issn.1673-0224.2019.01.010

    Wang L, Yin H, Xu R, et al. Preparation and mechanical properties of in-situ carbon nanotube/aluminum composites. Mater Sci Eng Powder Metall, 2019, 24(1): 63 DOI: 10.3969/j.issn.1673-0224.2019.01.010

    [46]

    Zhang X, Hou X D, Pan D, et al. Designable interfacial structure and its influence on interface reaction and performance of MWCNTs reinforced aluminum matrix composites. Mater Sci Eng A, 2020, 793: 139783 DOI: 10.1016/j.msea.2020.139783

    [47]

    Kim K T, Cha S I, Hong S H, et al. Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites. Mater Sci Eng A, 2006, 430: 27 DOI: 10.1016/j.msea.2006.04.085

    [48]

    Nam D H, Cha S I, Lim B K, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al−Cu composites. Carbon, 2012, 50(7): 2417 DOI: 10.1016/j.carbon.2012.01.058

    [49]

    Zhu K Y, Jiang C H, Ji V. Surface layer characteristics of CNT/Al–Mg–Si alloy composites treated by stress peening. Surf Coat Technol, 2017, 317: 10 DOI: 10.1016/j.surfcoat.2017.03.039

    [50]

    Xu R, Tan Z Q, Fan G L, et al. High-strength CNT/Al–Zn–Mg–Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying. Composites Part A, 2018, 111: 1 DOI: 10.1016/j.compositesa.2018.05.012

    [51]

    Ci L J, Ryu Z Y, Jin-Phillipp N Y, et al. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater, 2006, 54(20): 5367 DOI: 10.1016/j.actamat.2006.06.031

    [52]

    Xu R, Tan Z Q, Xiong D B, et al. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Composites Part A, 2017, 96: 57 DOI: 10.1016/j.compositesa.2017.02.017

    [53]

    Chen B, Zhou X Y, Zhang B, et al. Microstructure, tensile properties and deformation behaviors of aluminium metal matrix composites co-reinforced by ex-situ carbon nanotubes and in-situ alumina nanoparticles. Mater Sci Eng A, 2020, 795: 139930 DOI: 10.1016/j.msea.2020.139930

    [54]

    Zhou W W, Yamaguchi T, Kikuchi K, et al. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater, 2017, 125: 369 DOI: 10.1016/j.actamat.2016.12.022

    [55]

    Yu Z Y, Tan Z Q, Xu R, et al. Enhanced load transfer by designing mechanical interfacial bonding in carbon nanotube reinforced aluminum composites. Carbon, 2019, 146: 155 DOI: 10.1016/j.carbon.2019.01.108

    [56]

    Chen X, Huang G S, Liu S S, et al. Grain refinement and mechanical properties of pure aluminum processed by accumulative extrusion bonding. Trans Nonferrous Met Soc China, 2019, 29: 437 DOI: 10.1016/S1003-6326(19)64953-8

    [57] 徐润. 碳纳米管增强铝基复合材料的微结构调控与强塑性研究[学位论文]. 上海: 上海交通大学, 2019

    Xu R. Investigation on the Microstructure Tailoring and Strength-ductility Behavior in Carbon Nanotube Reinforced Al Matrix Composites [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2019

    [58]

    Liu Z Y, Ma K, Fan G H, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al–Cu–Mg nanocomposites by material parameter optimisation. Carbon, 2020, 157: 602 DOI: 10.1016/j.carbon.2019.10.080

    [59]

    Fu X W, Tan Z Q, Ma Z Q, et al. Powder assembly & alloying to CNT/Al–Cu–Mg composites with trimodal grain structure and strength-ductility synergy. Composites Part B, 2021, 225: 109271 DOI: 10.1016/j.compositesb.2021.109271

    [60]

    Choi H J, Min B H, Shin J H, et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes. Composites Part A, 2011, 42(10): 1438 DOI: 10.1016/j.compositesa.2011.06.008

    [61]

    He T B, He X L, Tang P J, et al. The use of cryogenic milling to prepare high performance Al2009 matrix composites with dispersive carbon nanotubes. Mater Des, 2017, 114: 373 DOI: 10.1016/j.matdes.2016.11.008

    [62]

    Liu Z Y, Xiao B L, Wang W G, et al. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon, 2012, 50(5): 1843 DOI: 10.1016/j.carbon.2011.12.034

    [63]

    Liu Z Y, Xiao B L, Wang W G, et al. Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon, 2013, 62: 35 DOI: 10.1016/j.carbon.2013.05.049

    [64]

    Nam D H, Kim Y K, Cha S I, et al. Effect of CNTs on precipitation hardening behavior of CNT/Al–Cu composites. Carbon, 2012, 50(13): 4809 DOI: 10.1016/j.carbon.2012.06.005

    [65]

    Meng X, Liu T, Shi C S, et al. Synergistic effect of CNTs reinforcement and precipitation hardening in in-situ CNTs/Al–Cu composites. Mater Sci Eng A, 2015, 633: 103 DOI: 10.1016/j.msea.2015.03.007

    [66]

    Liu Z Y, Xiao B L, Wang W G, et al. Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing. Carbon, 2014, 69: 264 DOI: 10.1016/j.carbon.2013.12.025

    [67]

    Shin S E, Moon S M, Lee D Y, et al. Development of press-and-sinter Al2024-based nanocomposites reinforced with multiwalled carbon nanotubes. J Compos Mater, 2016, 50(26): 3619 DOI: 10.1177/0021998315623081

    [68]

    Ma K, Liu Z Y, Liu B S, et al. Improving ductility of bimodal carbon nanotube/2009Al composites by optimizing coarse grain microstructure via hot extrusion. Composites Part A, 2021, 140: 106198 DOI: 10.1016/j.compositesa.2020.106198

  • 期刊类型引用(5)

    1. 龙安平,熊江英,张高翔,肖磊,冯干江,郭建政,刘如铁. FGH4113A合金的双性能热处理组织与力学性能研究. 稀有金属材料与工程. 2024(04): 1042-1050 . 百度学术
    2. 武金江,赵广迪,姜昊源,孙乙轩,王博. 加热工艺对难变形高温合金U720Li中γ'相溶解及晶粒长大行为的影响. 稀有金属材料与工程. 2024(08): 2205-2216 . 百度学术
    3. 刘晓燕,张习祎,陈秀全,孙靖石,张博言,杨艳慧. 热挤压态FGH96合金热变形行为及变形机制研究. 稀有金属. 2024(08): 1108-1119 . 百度学术
    4. 洪震,张伟博,巩江涛,舒林森. 基于PSO–BP–GA混合算法的激光熔覆工艺多目标优化. 精密成形工程. 2023(07): 210-218 . 百度学术
    5. 朱磊,王易成,张皓,陈阳,江荣,宋迎东. 具有不同梯度晶粒组织的粉末高温合金疲劳小裂纹扩展原位观察. 粉末冶金技术. 2023(05): 420-426 . 本站查看

    其他类型引用(0)

图(16)  /  表(2)
计量
  • 文章访问数:  2080
  • HTML全文浏览量:  162
  • PDF下载量:  103
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-01-03
  • 录用日期:  2022-01-03
  • 网络出版日期:  2021-10-17
  • 刊出日期:  2024-02-27

目录

/

返回文章
返回