Research progress on the interface and grain control in carbon nanotube reinforced aluminum matrix composites
-
摘要:
随着碳纳米管增强铝基复合材料制备工艺的不断完善,碳纳米管的难分散问题被妥善解决,复合材料的强度有所提高,但复合材料的高模量、高强度没有得到充分利用,并出现“强度–塑性”倒置现象。本文总结了近年来对碳/铝复合材料界面结构、晶粒结构与复合构型设计的调控手段,讨论了界面结构强度对碳纳米管载荷传递效率的影响,分析了出现倒置现象的原因,并针对复合材料塑韧性差的问题,提出了调控思路,为制备强度高、韧性强的碳纳米管增强铝基复合材料提供依据。
Abstract:With the continuous improvement on the preparation process of the carbon nanotube-reinforced aluminum matrix composites, the difficult dispersion problem of the carbon nanotubes has been properly solved, and the composite strength has been improved, but the high modulus and high strength of the composites have not been fully utilized, and the “strength-plastic” inversion phenomenon has appeared. The adjustment methods of interface structure, grain structure, and composite configuration design of the carbon/aluminum composites in recent years were summarized in this paper, the influence of interface structure strength on the load transfer efficiency of the carbon nanotubes was discussed, the causes of inversion phenomenon were analyzed, and the control ideas were proposed to solve the problem of poor plastic toughness of the composites, providing the basis for preparing the carbon nanotube-reinforced aluminum matrix composites with high strength and toughness.
-
粉末冶金摩擦材料是一种含有金属和非金属的多组元假合金。一般由基体组元、摩擦组元和润滑组元三部分组成[1-2]。与有机摩擦材料相比, 粉末冶金摩擦材料的力学强度高、抗冲击载荷强、摩擦系数稳定、热稳定性高、热传导性好、抗腐蚀能力强, 以及耐磨性能优良, 是现代刹车材料中应用较为广泛的材料之一[3-5]。目前已被应用于各种大型民用飞机、高性能军用飞机、火车、汽车、风电行业以及其它机械制动装置中[6-10]。
相对比于铁基粉末冶金摩擦材料高温下容易产生胶合、摩擦系数波动大、异常磨损明显、噪声大等情况, 铜基摩擦材料因其良好的导热性和自润湿性能, 在干、湿条件下均具备稳定的摩擦性能, 并在高速制动摩擦过程中, 基体与铜结构形成热扩散通道, 能够在相对短的时间内将大量摩擦热散发到环境中, 有效避免了热聚集引起胶粘对制动盘性能造成不利的影响[11]。长期以来, 对铜基粉末冶金摩擦材料的研究主要集中在配方研究和制备工艺对摩擦磨损性能的影响方面, 而刹车速度对铜基粉末冶金摩擦材料的摩擦磨损机理的研究相对较少。本文以铜基粉末冶金摩擦材料为研究对象, 探讨不同的刹车速度对铜基粉末冶金摩擦材料摩擦磨损性能的影响规律, 并对其微观组织进行研究表征, 为新型铜基粉末冶金摩擦材料的深入研究提供参考与理论支持。
1. 实验
1.1 试样制备
实验中所用的材料主要包括电解铜粉、还原铁粉、鳞片状天然石墨, SiO2粉和铬铁等。按表 1的配方分别称取各种粉料, 并在双锥形混合机中混合20~24 h, 将混合均匀的混合料制成压坯, 压坯尺寸为20 mm×15 mm, 厚度大于5 mm。将压坯置于钟罩式加压烧结炉内, 并在氢气保护气氛中进行加压烧结, 烧结温度为850~900℃, 烧结压力为0.3~0.5 MPa, 烧结时间为3.5~4 h。烧结完成后冷却至500℃后再随箱水冷至≤60℃, 出砂。
表 1 铜基粉末冶金摩擦材料化学成分(质量分数)Table 1. Chemical composition of the copper-based powder metallurgy brake materials% Cu Sn Fe SiO2 铬铁 其它 60~70 1~6 6~15 5~10 2~5 10~20 1.2 性能表征
采用JEOL公司的JSM-6390A型扫描电子显微镜(scanning electron microscope, SEM)对铜基粉末冶金摩擦材料实验前后的表面形貌进行观测; 采用HRF-150型洛氏硬度计和夏比冲击试验机分别对烧结后粉末层的硬度和冲击韧性进行表征; 在MM-3000型摩擦磨损性能试验台上进行摩擦磨损性能试验, 对偶盘材料为30CrMnSiA。试验前, 摩擦副表面先磨合至摩擦副贴合面积≥80%, 摩擦磨损试验条件及要求见表 2。
表 2 摩擦磨损试验条件Table 2. Condition of friction and wear test编号 惯量/ (kg·m2) 刹车压力/ MPa 刹车速度/ (m·s-1) 刹车转速/ (r·min-1) 次数 1# 0.225 0.66 27.78 2652 10 2# 33.33 3183 10 3# 38.89 3714 10 4# 44.44 4244 10 5# 50.00 4775 10 6# 55.56 5305 10 摩擦试验机记录摩擦吸收功率、刹车力矩与刹车时间关系。根据式(1)可计算出摩擦系数。
$$ \mu = \frac{{2M}}{{\left( {{\gamma _1} + {\gamma _2}} \right) \cdot F}} $$ (1) 式中:μ为摩擦系数, M为力矩(N·m), F为荷重(N), γ1为内圈半径(m), γ2为外圈半径(m)。用电子天平测量试样摩擦试验前后的质量变化; 用千分尺测量试样上6个不同位置处摩擦试验前后的厚度变化, 计算出摩擦试验前后试样厚度差, 求出平均值即试样的线性磨损量。
2. 结果与分析
2.1 微观结构
图 1为烧结后铜基粉末冶金摩擦材料表面显微组织形貌。图中黑色的为鳞片石墨, 白色的为铜, 灰色的可能为铁、铬铁或SiO2颗粒。从图可以看出, 大量的鳞片石墨稳定地分布在铜基体当中, 从而保证了刹车过程的平稳性和摩擦系数的稳定性。从图 1 (b)可以清楚地看到大量的灰色颗粒, 其中近似球状的较大颗粒为铬铁(200目, 如箭头所示), 其与基体接触良好, 两者之间观测不到明显的界面[12]; 较小的球状物可能为铁、二氧化硅等颗粒(100目); 这些颗粒均匀地分布在铜基体当中, 铜基体包裹着鳞片状石墨分布在摩擦片表面, 具有稳定的摩擦系数。
2.2 物理性能
铜基粉末冶金摩擦材料的力学性能如表 3所示。从表中可以看出, 摩擦材料的密度较高, 说明摩擦材料中的非金属组元所占体积较小; 材料的洛氏硬度较低, 说明摩擦试验中的对偶磨损相对较小; 材料的抗冲击韧性较大, 表明摩擦组元在材料烧结过程中以机械镶嵌的方式存在基体材料中, 提高了摩擦材料的耐磨性。在高速刹车过程中, 摩擦材料的力学性能确保了其在较大冲击力和较大磨损量条件下的使用。
表 3 摩擦材料的力学性能Table 3. Mechanical properties of friction material密度/ (g·cm-3) 洛氏硬度,HB 冲击韧性/ (J·cm-2) ≥5.72 ≥27 ≥33.5 2.3 摩擦磨损试验
图 2为试样在55.56 m/s刹车速度下的摩擦磨损曲线图。在此刹车速度下, 最大摩擦系数为0.5061, 平均摩擦系数为0.4521;经计算, 离均差率为11.94%, 较小的离均差率说明了铜基摩擦材料具有稳定的摩擦系数。从图中还可以看出, 摩擦系数曲线无明显的振颤现象, 力矩曲线也呈稳定增长趋势, 这也充分表明了该铜基粉末冶金摩擦材料的刹车制动效果平稳, 产生这种现象的原因可能是由于摩擦材料配方中摩擦组元铬铁和铜基体具有良好的润湿性能, 从而提高了摩擦系数的稳定性[12]。
图 3 (a)是在不同刹车速度条件下摩擦磨损性能试验后试样的摩擦吸收功率和摩擦系数曲线图。摩擦吸收功率是指试样在单位时间单位面积内所吸收的功, 它与摩擦面的温度升高有着直接对应关系, 因此影响试样的摩擦系数。从图 3 (a)可以看出, 随着刹车速度增大, 刹车能量升高, 摩擦面的温度进一步升高, 试样的摩擦吸收功率呈近似线性升高。刹车速度从27.78 m/s增加到44.44 m/s, 试样的摩擦吸收功率速率增长最快; 当刹车速度从44.44 m/s增加到55.56 m/s, 试样的摩擦吸收功率增加相对缓慢, 这表明铜基粉末冶金摩擦材料在低速条件下, 吸收的动能可能主要被铜基摩擦材料中的孔隙吸收并传导到空气当中; 当制动速率超过44.4 m/s时, 摩擦材料的吸收动能会被铜基摩擦材料自身所吸收, 并通过高的导热性将吸收能量传导至空气中。从图中还可以看出, 当刹车速度从27.78 m/s增加到44.44 m/s时, 摩擦系数也相对从0.4040增加到0.5071。但随着刹车速率的提高, 试样的摩擦系数出现了明显下降的趋势, 这可能与摩擦材料的摩擦机理和微观结构有关。
图 3 (b)是在不同刹车速度条件下摩擦磨损性能试验后试样的线性磨损率和质量磨损。从图 3 (b)可以看出, 试样的线磨损率随刹车速度的变化与质量损失随刹车速度的变化一致, 都呈上升的趋势。当刹车速度从27.78 m/s增加到33.33 m/s, 试样的线磨损率和质量磨损均较大, 这是由于在较低的速度下, 刹车未进入平稳阶段, 出现了较为明显的磨粒磨损; 当刹车速度从33.33 m/s增加到50.00 m/s时, 粘着磨损起主要作用, 因此线性磨损率和质量磨损都相对较小; 当刹车速率增长至55.56 m/s时, 试样的质量磨损呈明显增长趋势, 这可能是由于在高速条件下, 铜基摩擦材料自身软化造成摩擦组元脱落, 从而质量损耗明显。但由于线性磨损率数据的获得是通过千分尺测量一定面积上的厚度损耗而计算得到的, 因此线性磨损率并不能完全反应出摩擦组元的脱落引起厚度的微小变化, 因而线性损耗率增长不明显。
为进一步研究刹车速度对摩擦磨损性能的影响, 探讨摩擦磨损性能与摩擦面的关系, 采用扫描电子显微镜对在不同刹车速度下试样的摩擦面进行分析。图 4所示为不同刹车速度试验后铜基粉末冶金摩擦材料表面的扫描电子显微形貌。从图中可以看出, 当刹车速度为27.78 m/s和33.33 m/s时, 由于刹车速度较低, 摩擦剪切力较小, 因此摩擦表面温度较低, 且未能形成连续完整的氧化膜, 从而出现了较小面积的剥落且剥落的块状物较小, 其中剥落后较小的硬质颗粒在剪切力作用下从摩擦表面脱落, 在摩擦副之间形成磨粒, 在摩擦表面产生犁沟, 发生磨料磨损和剥层损耗, 其磨损主要是由机械啮合作用造成的; 当刹车速度为38.89 m/s和44.44 m/s时, 摩擦表面较为光滑, 无明显的脱落。这是由于随着刹车速度的增大, 摩擦吸收功率增大, 摩擦面的温度提高, 摩擦剪切力的作用也逐渐增强, 氧化膜趋于平滑连续, 摩擦表面与摩擦副的真实接触面积越大, 其机械啮合作用减弱, 粘着机理起主要作用。随着刹车速度的进一步增大, 摩擦表面在较大剪切力的作用下发生了较为严重的脱落。当刹车速度从50.00 m/s逐渐增大到55.56 m/s, 试样摩擦表面单位面积吸收的能量进一步增大, 温度进一步升高, 摩擦表面在较大剪切力的作用下发生了较为严重的脱落。这是由于摩擦产生的高温引起材料软化, 破坏了形成的氧化膜, 降低了分子键的抗剪切强度, 从而在摩擦面上出现了不同程度的犁沟[13-14]。
3. 结论
(1) 铜基粉末冶金摩擦材料的摩擦磨损性能与刹车速度密切相关。随着刹车速度的增大, 刹车能量急剧升高, 摩擦材料的摩擦吸收功率近似线性增长, 而摩擦系数呈先增大后减小的趋势, 并且铜基粉末冶金摩擦材料的线磨损率与质量磨损随刹车速度增长呈上升趋势。
(2) 在一定的刹车速度下, 铜基粉末冶金摩擦材料摩擦表面的氧化膜愈趋平滑连续。但随着刹车速度的提高, 铜基体自身发生软化, 破坏了已形成的氧化膜, 降低了分子键的抗剪切强度, 从而增大了磨损量。
-
图 3 原始碳纳米管和包覆SiC碳纳米管的滴铝接触角测量(真空、800 ℃)[10]:(a)光学形貌;(b)原始碳纳米管滴铝接触角;(c)包覆SiC碳纳米管滴铝接触角
Figure 3. Contact angle measurement of the pristine CNTs pellet and SiC/CNTs pellet after the sessile drop of aluminum at 800 ℃ in vacuum[10]: (a) optical image; (b) contact angle measurement of the pristine CNTs pellet; (c) contact angle measurement of the SiC/CNTs pellet
图 7 碳纳米管在硼酸溶液中的吸附机理(a),CNTs@H3BO3混合粉末扫描电子显微形貌及能谱分析(b)~(b3)以及对选定区域元素的成分分析(c)[24]
Figure 7. Mechanisms of the CNTs adsorption in boric acid solution (a), the scanning electron microscope (SEM) image and the corresponding energy spectrum analysis of the CNTs@H3BO3 hybrid powders (b)~(b3), and the element component analysis in the selected area (c)[24]
图 10 原料、碳纳米管–硅粉混合物及CNTs/SiC复合粉末显微形貌[46]:(a)纳米硅粉;(b)碳纳米管;(c)CNTs–Si粉末混合物;(d)~(f)热处理后5CNTs–1Si、5CNTs–3SiC和1CNTs–1SiC复合粉末;(g)~(i)1CNTs–1SiC复合粉末显微结构及相应区域的碳、硅元素分布
Figure 10. SEM images of the raw materials, CNTs–Si powder mixtures, and CNTs/SiC composite powders[46]: (a) raw Si nano-powders; (b) raw CNTs powders; (c) CNTs–Si powder mixtures; (d)~(f) 5CNTs–1Si, 5CNTs–3SiC and 1CNTs–1SiC composite powders after heat treatment; (g)~(i) microstructure of the 1CNTs–1SiC composite powders and the corresponding carbon and Si element distribution
图 16 不同晶粒结构CNTs/Al–Cu–Mg复合材料典型工程应力–应变曲线(a)和三峰晶粒结构CNTs/Al–Cu–Mg复合材料屈服强度–延伸率关系(b)[28,57-68]
Figure 16. Representative engineering stress-strain curves of the CNTs/Al–Cu–Mg composites with different grain structures (a) and the relationship between the yield strength and elongation of the CNTs/Al–Cu–Mg composites with different grain structures (b)[28,57-68]
表 1 含有质量分数1.5%碳纳米管的CNTs/Al复合材料拉伸性能[52]
Table 1 Tensile properties of the CNTs/Al composites with 1.5% CNTs (mass fraction)[52]
材料 球磨方式 最终拉伸强度 / MPa 均匀延伸率 / % 平均晶粒尺寸 / nm 总延伸率 / % CNTs/Al 低速球磨 367±2 3.2±0.1 337 6.3±0.4 变速球磨 376±3 3.9±0.2 308 12.4±1.3 高速球磨 408±1 1.5±0.0 217 4.0±0.3 表 2 Al及CNTs/Al复合材料的晶粒结构参数和力学性能[57]
Table 2 Structural parameters and mechanical properties of the Al and the CNTs/Al composites[57]
材料(体积分数) 平均晶粒宽度 / nm 平均晶粒直径 / nm 抗拉强度 / MPa 均匀延伸率 / % 断裂延伸率 / % Al(350 ℃) 443 881 233±2 5.3±0.2 17.4±0.9 Al(320 ℃) 326 510 284±1 3.5±0.3 13.7±0.8 Al(300 ℃) 295 463 298±3 2.5±0.3 11.6±1.3 1%CNTs/Al(350 ℃) 438 832 269±6 5.2±0.3 15.3±0.8 2%CNTs/Al(350 ℃) 426 756 315±2 5.1±0.2 11.1±0.6 1%CNTs/Al(320 ℃) 308 573 315±5 3.2±0.3 12.6±1.1 2%CNTs/Al(350 ℃) 297 435 355±2 3.6±0.1 14.8±1.0 -
[1] 聂俊辉, 魏少华, 贾成厂, 等. 热管理领域用碳纳米管/铝复合材料的组织与热学性能研究. 粉末冶金技术, 2014, 32(5): 372 Nie J H, Wei S H, Jia C C, et al. Microstructures and thermal properties of carbon nanotube reinforced aluminum matrix composites for thermal management applications. Powder Metall Technol, 2014, 32(5): 372
[2] Clyne T W, Withers P J. An Introduction to Metal Matrix Composites. New York: Cambridge University Press, 1993
[3] 俞子贇. 碳纳米管增强铝基复合材料界面调控及力学性能研究[学位论文]. 上海: 上海交通大学, 2019 Yu Z Y. Interface Tailoring and Mechanical Performance of Carbon Nanotube Reinforced Aluminum Matrix Composites [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2019
[4] 孔亚茹, 郭强, 张荻. 颗粒增强铝基复合材料界面性能的研究. 材料导报, 2015, 29(5): 34 Kong Y R, Guo Q, Zhang D. Review on interfacial properties of particle-reinforced aluminum matrix composites. Mater Rev, 2015, 29(5): 34
[5] 姚争争, 童伟, 陈名海, 等. 碳纳米管增强铝基复合材料界面控制研究进展. 材料导报, 2016, 30(3): 119 Yao Z Z, Tong W, Chen M H, et al. Controlling the interface reaction in carbon nanotubes-reinforced aluminum composite: a review. Mater Rev, 2016, 30(3): 119
[6] Kim W J, Yu Y J. The effect of the addition of multiwalled carbon nanotubes on the uniform distribution of TiC nanoparticles in aluminum nanocomposites. Scr Mater, 2014, 72-73: 25 DOI: 10.1016/j.scriptamat.2013.10.008
[7] Dhandapani S, Rajmohan T, Palanikumar K, et al. Synthesis and characterization of dual particle (MWCT+B4C) reinforced sintered hybrid aluminum matrix composites. Part Sci Technol, 2016, 34(3): 255 DOI: 10.1080/02726351.2015.1069431
[8] Kim H H, Babu J S S, Kang C G. Hot extrusion of A356 aluminum metal matrix composite with carbon nanotube/Al2O3 hybrid reinforcement. Metall Mater Trans A, 2014, 45: 2636 DOI: 10.1007/s11661-014-2185-5
[9] Chen B, Kondoh K, Imai H, et al. Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions. Scr Mater, 2016, 113: 158 DOI: 10.1016/j.scriptamat.2015.11.011
[10] So K P, Jeong J C, Park J G, et al. SiC formation on carbon nanotube surface for improving wettability with aluminum. Compos Sci Technol, 2013, 74: 6 DOI: 10.1016/j.compscitech.2012.09.014
[11] Zhang X, Li S F, Pan B, et al. Regulation of interface between carbon nanotubes-aluminum and its strengthening effect in CNTs reinforced aluminum matrix nanocomposites. Carbon, 2019, 155: 686 DOI: 10.1016/j.carbon.2019.09.016
[12] Kang K, Bae G, Kim B, et al. Thermally activated reactions of multi-walled carbon nanotubes reinforced aluminum matrix composite during the thermal spray consolidation. Mater Chem Phys, 2012, 133(1): 495 DOI: 10.1016/j.matchemphys.2012.01.071
[13] Zhang J, Lu H, Sun Y, et al. Humidity effects on anisotropic nanofriction behaviors of aligned carbon nanotube carpets. ACS Appl Mater Interfaces, 2013, 5(19): 9247 DOI: 10.1021/am403981a
[14] Bakshi S R, Agarwal A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon, 2011, 49: 533 DOI: 10.1016/j.carbon.2010.09.054
[15] Chen B, Shen J, Ye X, et al. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon, 2017, 114: 198 DOI: 10.1016/j.carbon.2016.12.013
[16] Yuan C, Zhang Z M, Tan Z Q, et al. Enhanced ductility by Mg addition in the CNT/Al-Cu composites via flake powder metallurgy. Mater Today Commun, 2021, 26: 101854 DOI: 10.1016/j.mtcomm.2020.101854
[17] Chen B, Kondoh K, Umeda J, et al. Interfacial in-situ Al2O3 nanoparticles enhance load transfer in carbon nanotube (CNT)-reinforced aluminum matrix composites. J Alloys Compd, 2019, 789: 25 DOI: 10.1016/j.jallcom.2019.03.063
[18] 鄢来朋, 谭占秋, 熊定邦, 等. 碳纳米管/铝复合材料界面调控研究进展. 中国材料进展, 2016, 35(12): 943 Yan L P, Tan Z Q, Xiong D B, et al. Research progress on the interface control in CNT/Al composites. Mater China, 2016, 35(12): 943
[19] 范同祥, 刘悦, 杨昆明, 等. 碳/金属复合材料界面结构优化及界面作用机制的研究进展. 金属学报, 2019, 55(1): 16 Fan T X, Liu Y, Yang K M, et al. Recent progress on interface structure optimization and their influencing mechanism of carbon reinforced metal matrix composites. Acta Metall Sinica, 2019, 55(1): 16
[20] 李景瑞, 蒋小松, 刘晚霞, 等. 碳纳米管增强铝基复合材料的界面特性及增强机理研究进展. 材料导报, 2015, 29(1): 31 Li J R, Jiang X S, Liu W X, et al. Research progress on interface characteristics and strengthening mechanism in carbon nanotube reinforced aluminum matrix composites. Mater Rev, 2015, 29(1): 31
[21] 胡银生, 余欢, 徐志锋, 等. 增强纤维对连续纤维增强铝基复合材料界面和力学性能的影响. 中国有色金属学报, 2019, 29(10): 2245 Hu Y S, Yu H, Xu Z F, et al. Effect of reinforcing fiber on interface and mechanical properties of fiber reinforced aluminum matrix composites. Chin J Nonferrous Met, 2019, 29(10): 2245
[22] Guo B S, Zhang X M, Cen X, et al. Enhanced mechanical properties of aluminum based composites reinforced by chemically oxidized carbon nanotubes. Carbon, 2018, 139: 459 DOI: 10.1016/j.carbon.2018.07.026
[23] Zhou W W, Bang S, Kurita H, et al. Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon, 2016, 96: 919 DOI: 10.1016/j.carbon.2015.10.016
[24] Shan Y C, Pu B W, Liu E Z, et al. In-situ synthesis of CNTs@Al2O3 wrapped structure in aluminum matrix composites with balanced strength and toughness. Mater Sci Eng A, 2020, 797: 140058 DOI: 10.1016/j.msea.2020.140058
[25] Jiang L, Fan G L, Li Z Q, et al. An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon, 2011, 49: 1965 DOI: 10.1016/j.carbon.2011.01.021
[26] Deng C F, Zhang X X, Wang D Z, et al. Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater Lett, 2007, 61: 1725 DOI: 10.1016/j.matlet.2006.07.119
[27] Yang H Y, Yue X, Wang Z, et al. Strengthening mechanism of TiC/Al composites using Al–Ti–C/CNTs with doping alloying elements (Mg, Zn and Cu). J Mater Res Technol, 2020, 9(3): 6475 DOI: 10.1016/j.jmrt.2020.04.033
[28] Ghosh G, Sidpara A, Bandyopadhyay P P. Magnetorheological finishing of WC–Co coating using iron-B4C–CNT composite abrasives. Tribol Int, 2021, 155: 106807 DOI: 10.1016/j.triboint.2020.106807
[29] Sethi J, Jena S, Das S, et al. Synthesis and properties of Al–AlN–CuCNT and Al–Y2W3O12–CuCNT hybrid composites. Mater Sci Eng A, 2021, 810: 140919 DOI: 10.1016/j.msea.2021.140919
[30] Mtz-Enriquez A I, Gomez-Solis C, Oliva A I, et al. Enhancing the voltage and discharge times of graphene supercapacitors depositing a CNT/V2O5 layer on their electrodes. Mater Chem Phys, 2020, 244: 122698 DOI: 10.1016/j.matchemphys.2020.122698
[31] Isari A A, Mehregan M, Mehregan S, et al. Sono-photocatalytic degradation of tetracycline and pharmaceutical wastewater using WO3/CNT heterojunction nanocomposite under US and visible light irradiations: A novel hybrid system. J Hazard Mater, 2020, 390: 122050 DOI: 10.1016/j.jhazmat.2020.122050
[32] Jafar M R, Nagesh D S. Effect of process control agent and mechanical milling on the embedment and uniform dispersion of CNTs and B4C in aluminum matrix. Mater Today Proceed, 2021, 47: 3765 DOI: 10.1016/j.matpr.2021.02.573
[33] Liu L, Li S F, Zhang X, et al. Syntheses microstructure evolution and performance of strength-ductility matched aluminum matrix composites reinforced by nano SiC-cladded CNTs. Mater Sci Eng A, 2021, 824: 141784 DOI: 10.1016/j.msea.2021.141784
[34] Chu K, Wang J, Liu Y P, et al. Creating defects on graphene basal-plane toward interface optimization of graphene/CuCr composites. Carbon, 2019, 143: 85 DOI: 10.1016/j.carbon.2018.10.095
[35] Liu G, Pan Z C, Zhang B, et al. A novel TiN coated CNTs nanocomposite CNTs@TiN supported Pt electrocatalyst with enhanced catalytic activity and durability for methanol oxidation reaction. Int J Hydrogen Energy, 2017, 42(17): 12467 DOI: 10.1016/j.ijhydene.2017.03.181
[36] Tran T Q, Lee J K Y, Chinnappan A, et al. Strong, lightweight, and highly conductive CNT/Au/Cu wires from sputtering and electroplating methods. J Mater Sci Technol, 2020, 40: 99 DOI: 10.1016/j.jmst.2019.08.033
[37] Zhao Q, Tan S L, Xie M, et al. A study on the CNTs-Ag composites prepared based on spark plasma sintering and improved electroless plating assisted by ultrasonic spray atomization. J Alloys Compd, 2018, 737: 31 DOI: 10.1016/j.jallcom.2017.12.066
[38] Zhang Y P, Wang Q, Chen G, et al. Mechanical, tribological and corrosion physiognomies of CNT-Al metal matrix composite (MMC) coatings deposited by cold gas dynamic spray (CGDS) process. Surf Coat Technol, 2020, 403: 126380 DOI: 10.1016/j.surfcoat.2020.126380
[39] Abdulameer S, Al-Sultani K F, Sh Majdi H. MWCNTs-YSZ coating deposited by plasma thermal spray on ICONEL 738 low carbon substrate. Mater Today Proceed, 2021, 60: 1241
[40] Murugesan R, Gopal M, Murali G. Effect of Cu, Ni addition on the CNTs dispersion, wear and thermal expansion behavior of Al-CNT composites by molecular mixing and mechanical alloying. Appl Surf Sci, 2019, 495: 143542 DOI: 10.1016/j.apsusc.2019.143542
[41] Gao B, Chen G Z, Puma G L. Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl Catal B, 2009, 89(3-4): 503 DOI: 10.1016/j.apcatb.2009.01.009
[42] Xi K, Li J, Wang Y W, et al. Thermal insulation and char layer mechanical properties of a novel ethylene propylene diene monomer composite reinforced with carbon nanotubes coated via chemical vapour deposition. Compos Sci Technol, 2021, 201: 108537 DOI: 10.1016/j.compscitech.2020.108537
[43] Krishna A, Evangeline T G, Aravinda L S, et al. Synthesis and thermal simulations of novel encapsulated CNT multifunctional thin-film based nanomaterial of SiO2-CNT and TiN-CNT by PVD and PECVD techniques for thermal applications. Diamond Relat Mater, 2020, 109: 108029 DOI: 10.1016/j.diamond.2020.108029
[44] Guerra-Nuñez C, Putz B, Savu R, et al. The nucleation, radial growth, and bonding of TiO2 deposited via atomic layer deposition on single-walled carbon nanotubes. Appl Surf Sci, 2021, 555: 149662 DOI: 10.1016/j.apsusc.2021.149662
[45] 王雷, 尹华, 徐润, 等. 原位碳纳米管/铝基复合材料的制备与力学性能. 粉末冶金材料科学与工程, 2019, 24(1): 63 DOI: 10.3969/j.issn.1673-0224.2019.01.010 Wang L, Yin H, Xu R, et al. Preparation and mechanical properties of in-situ carbon nanotube/aluminum composites. Mater Sci Eng Powder Metall, 2019, 24(1): 63 DOI: 10.3969/j.issn.1673-0224.2019.01.010
[46] Zhang X, Hou X D, Pan D, et al. Designable interfacial structure and its influence on interface reaction and performance of MWCNTs reinforced aluminum matrix composites. Mater Sci Eng A, 2020, 793: 139783 DOI: 10.1016/j.msea.2020.139783
[47] Kim K T, Cha S I, Hong S H, et al. Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites. Mater Sci Eng A, 2006, 430: 27 DOI: 10.1016/j.msea.2006.04.085
[48] Nam D H, Cha S I, Lim B K, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al−Cu composites. Carbon, 2012, 50(7): 2417 DOI: 10.1016/j.carbon.2012.01.058
[49] Zhu K Y, Jiang C H, Ji V. Surface layer characteristics of CNT/Al–Mg–Si alloy composites treated by stress peening. Surf Coat Technol, 2017, 317: 10 DOI: 10.1016/j.surfcoat.2017.03.039
[50] Xu R, Tan Z Q, Fan G L, et al. High-strength CNT/Al–Zn–Mg–Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying. Composites Part A, 2018, 111: 1 DOI: 10.1016/j.compositesa.2018.05.012
[51] Ci L J, Ryu Z Y, Jin-Phillipp N Y, et al. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater, 2006, 54(20): 5367 DOI: 10.1016/j.actamat.2006.06.031
[52] Xu R, Tan Z Q, Xiong D B, et al. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Composites Part A, 2017, 96: 57 DOI: 10.1016/j.compositesa.2017.02.017
[53] Chen B, Zhou X Y, Zhang B, et al. Microstructure, tensile properties and deformation behaviors of aluminium metal matrix composites co-reinforced by ex-situ carbon nanotubes and in-situ alumina nanoparticles. Mater Sci Eng A, 2020, 795: 139930 DOI: 10.1016/j.msea.2020.139930
[54] Zhou W W, Yamaguchi T, Kikuchi K, et al. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater, 2017, 125: 369 DOI: 10.1016/j.actamat.2016.12.022
[55] Yu Z Y, Tan Z Q, Xu R, et al. Enhanced load transfer by designing mechanical interfacial bonding in carbon nanotube reinforced aluminum composites. Carbon, 2019, 146: 155 DOI: 10.1016/j.carbon.2019.01.108
[56] Chen X, Huang G S, Liu S S, et al. Grain refinement and mechanical properties of pure aluminum processed by accumulative extrusion bonding. Trans Nonferrous Met Soc China, 2019, 29: 437 DOI: 10.1016/S1003-6326(19)64953-8
[57] 徐润. 碳纳米管增强铝基复合材料的微结构调控与强塑性研究[学位论文]. 上海: 上海交通大学, 2019 Xu R. Investigation on the Microstructure Tailoring and Strength-ductility Behavior in Carbon Nanotube Reinforced Al Matrix Composites [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2019
[58] Liu Z Y, Ma K, Fan G H, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al–Cu–Mg nanocomposites by material parameter optimisation. Carbon, 2020, 157: 602 DOI: 10.1016/j.carbon.2019.10.080
[59] Fu X W, Tan Z Q, Ma Z Q, et al. Powder assembly & alloying to CNT/Al–Cu–Mg composites with trimodal grain structure and strength-ductility synergy. Composites Part B, 2021, 225: 109271 DOI: 10.1016/j.compositesb.2021.109271
[60] Choi H J, Min B H, Shin J H, et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes. Composites Part A, 2011, 42(10): 1438 DOI: 10.1016/j.compositesa.2011.06.008
[61] He T B, He X L, Tang P J, et al. The use of cryogenic milling to prepare high performance Al2009 matrix composites with dispersive carbon nanotubes. Mater Des, 2017, 114: 373 DOI: 10.1016/j.matdes.2016.11.008
[62] Liu Z Y, Xiao B L, Wang W G, et al. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon, 2012, 50(5): 1843 DOI: 10.1016/j.carbon.2011.12.034
[63] Liu Z Y, Xiao B L, Wang W G, et al. Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon, 2013, 62: 35 DOI: 10.1016/j.carbon.2013.05.049
[64] Nam D H, Kim Y K, Cha S I, et al. Effect of CNTs on precipitation hardening behavior of CNT/Al–Cu composites. Carbon, 2012, 50(13): 4809 DOI: 10.1016/j.carbon.2012.06.005
[65] Meng X, Liu T, Shi C S, et al. Synergistic effect of CNTs reinforcement and precipitation hardening in in-situ CNTs/Al–Cu composites. Mater Sci Eng A, 2015, 633: 103 DOI: 10.1016/j.msea.2015.03.007
[66] Liu Z Y, Xiao B L, Wang W G, et al. Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing. Carbon, 2014, 69: 264 DOI: 10.1016/j.carbon.2013.12.025
[67] Shin S E, Moon S M, Lee D Y, et al. Development of press-and-sinter Al2024-based nanocomposites reinforced with multiwalled carbon nanotubes. J Compos Mater, 2016, 50(26): 3619 DOI: 10.1177/0021998315623081
[68] Ma K, Liu Z Y, Liu B S, et al. Improving ductility of bimodal carbon nanotube/2009Al composites by optimizing coarse grain microstructure via hot extrusion. Composites Part A, 2021, 140: 106198 DOI: 10.1016/j.compositesa.2020.106198
-
期刊类型引用(1)
1. 郭春芳. 纳米NiO/ZrO_2复合光催化剂的制备及性能. 印染助剂. 2022(03): 31-34 . 百度学术
其他类型引用(1)