高级检索

导流管参数对真空紧耦合气雾化法制备Fe–Cr合金粉末的影响

Effect of melt delivery nozzle parameters on Fe–Cr alloy powders prepared by vacuum close-coupled gas atomization

  • 摘要: 采用真空紧耦合气雾化法制备Fe–Cr合金粉末,研究了导流管直径与导流管伸出长度对Fe–Cr合金粉末粒度分布、收得率、中位粒径(D50)的影响。结果表明,在其他工艺参数不变的情况下,当导流管直径从4.5 mm增大到6.0 mm时,Fe–Cr合金粉末累积粒度分布曲线右移,中位粒径增大,细粉收得率减小,粉末流动性减小,松装密度减小;当导流管伸出长度由2.0 mm增加到2.5 mm时,Fe–Cr合金粉末累积粒度分布曲线左移,中位粒径减小,细粉收得率增加,粉末流动性增加,松装密度升高。综上所述,雾化压力3.8 MPa,过热度250 ℃,导流管直径4.5 mm,导流管伸出长度2.5 mm,制备得到的Fe–Cr合金粉末综合性能最优。

     

    Abstract: Fe–Cr alloy powders were prepared by vacuum close-coupled gas atomization technology. The effects of the diameter and protrusion length of the melt delivery nozzle on the size distribution, yield, and median particle size (D50) of the Fe–Cr alloy powders were studied. The results show that, when the diameter of the melt delivery nozzle increases from 4.5 mm to 6.0 mm, the size accumulation distribution curve of the Fe–Cr alloy powders shifts to the right, the median particle size increases, the fine powder yield decreases, the powder fluidity decreases, and the apparent density decreases. When the protrusion length of the melt delivery nozzle increases from 2.0 mm to 2.5 mm, the size accumulation distribution curve of the Fe–Cr alloy powders shifts to the left, the median particle size decreases, the fine powder yield increases, the powder fluidity increases, and the apparent density increases. Combined with the experimental data analysis, the best comprehensive properties of the Fe–Cr alloy powders are obtained under the condition as the atomization pressure of 3.8 MPa, the superheat of 250 ℃, the nozzle diameter of 4.5 mm, and the nozzle protrusion length of 2.5 mm.

     

/

返回文章
返回