高级检索

粉末冶金钛基层状材料研究进展

徐静茹, 张卫东, 杨鹏, 陈福林, 吴正刚, 曹远奎

徐静茹, 张卫东, 杨鹏, 陈福林, 吴正刚, 曹远奎. 粉末冶金钛基层状材料研究进展[J]. 粉末冶金技术, 2023, 41(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090022
引用本文: 徐静茹, 张卫东, 杨鹏, 陈福林, 吴正刚, 曹远奎. 粉末冶金钛基层状材料研究进展[J]. 粉末冶金技术, 2023, 41(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090022
XU Jingru, ZHANG Weidong, YANG Peng, CHEN Fulin, WU Zhenggang, CAO Yuankui. Progress of titanium-based laminated materials by powder metallurgy[J]. Powder Metallurgy Technology, 2023, 41(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090022
Citation: XU Jingru, ZHANG Weidong, YANG Peng, CHEN Fulin, WU Zhenggang, CAO Yuankui. Progress of titanium-based laminated materials by powder metallurgy[J]. Powder Metallurgy Technology, 2023, 41(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090022

粉末冶金钛基层状材料研究进展

基金项目: 国家自然科学基金资助项目(51904100);湖南省自然科学基金资助项目(2021JJ40101);湖南省科技创新计划资助项目(2020RC2007)
详细信息
    通讯作者:

    E-mail: weidongzhang@hnu.edu.cn (张卫东)

    caoyuankui@csu.edu.cn (曹远奎)

  • 中图分类号: TG142.71

Progress of titanium-based laminated materials by powder metallurgy

More Information
  • 摘要:

    日益严苛的服役环境对钛材性能提出新的要求与挑战,层状结构的引入使钛基材料突破强度–韧性的桎梏有了新的思路。近年来,钛基层状结构材料成为研究热点,通过不同制备技术获得的钛基层状结构材料展现出了优异的力学性能。粉末冶金技术具有工艺简便、高效,易于实现组元调控与钛材性能优化等优点。本文对目前钛基层状材料的类型、主流制备技术进行阐述,着重介绍了粉末冶金钛基层状材料的研究进展,总结了高性能钛基层状结构的强韧化机制,最后对钛基层状结构材料的基础研究与实际应用进行了展望。

    Abstract:

    Based on the increasingly severe working environment, properties of titanium materials are facing the new challenges as the superior combination of strength and ductility. The design of laminated structure provides a new idea to achieve the remarkable strength-ductility enhancement of titanium-based materials. In recent years, titanium-based laminated materials have become the research hotspot. Titanium-based laminated materials obtained by different preparation techniques show excellent mechanical properties. Powder metallurgy technology has numerous advantages of simple and efficient process, by which the component control and the optimization of mechanical properties can be easily achieved. The main types and metallurgical processing of titanium-based laminated materials were described in this paper. The research progress of titanium-based laminated materials obtained by powder metallurgy was introduced, and strengthening and toughening mechanism of the high-performance titanium-based laminated structure materials was summarized. Finally, the basic research and practical application of the titanium-based laminated materials were prospected briefly.

  • 阴极是电真空器件的电子源,是器件的核心部件。热阴极是电真空器件中应用最广的一类阴极,它靠热能使阴极内的电子逸出表面,产生电子发射。经过百余年的发展,热阴极不论是在工作环境、耐受性还是在发射密度方面都取得长足进步,可满足器件1~100 A·cm-2发射电流密度的需求[1]。将阴极装配成间热式的组件结构应用更广泛,阴极发射体自身不通电加热,有利于获取高质量的电子注;热子一般置于发射表面之后,为阴极供热;两者功能不同,但在结构上需紧密相连,组成一个整体,即阴极热子组件,以保证高效传热,阴极稳定工作。多数氧化物阴极和所有扩散式阴极均制备成为阴极热子组件,特别是扩散阴极中的新型钪系阴极,其发射能力高于100 A·cm-2[2],具有广阔的发展应用前景。

    三维快速成型打印简称3D打印,又被称为增材制造技术,可将需要产品的三维模型文件通过3D打印设备进行分层离散处理,再经激光照射等方式将材料逐层叠加、精确堆积,迅速完成产品的成型[3-4]。常规的阴极热子组件制备流程是每个零件分别通过车削加工达到所需形状尺寸,随后进行钎焊组合,而通过3D打印的方式可以实现阴极热子组件整体的连续一体化制造,改变原有装配连接工艺。增材制造方式可快速高效地完成复杂结构的成型,特别适用于制造热子,可省去配套模具的使用和多次进炉烧结,降低制造难度。

    国内外3D打印领域中已有近20种不同的工艺体系,其中应用最典型、最成熟的包括立体光刻、叠层实体制造、熔融沉积成型、三维打印与胶粘、选择性激光烧结、选择性激光熔融等。虽然基本原理一致,但由于所用打印材料存在差异,各自特点和具体应用场合也有所不同。选择性激光熔化技术(selective laser melting, SLM)是一种新型“净成形”增材制造技术,主要成形过程包括对零件三维模型切片分层,计算截面轮廓数据并生成激光扫描路径,设备聚焦激光束对预置铺展的粉末进行选取熔化,冷却固化并逐层堆叠成所需零件[5-6]。选择性激光熔化成型件的力学性能好,与相同材料的铸造件相当,相对密度接近100%[7-8]。阴极热子组件的材料主要为难熔金属钨粉,近年来用于钨材料的3D打印技术取得快速发展,已能打印相对密度为97%的钨块体[9-10]。本文采用选择性激光熔化技术一体化3D打印了阴极热子组件模型,并对组件样品的热子加热和阴极发射性能进行了研究和讨论,希望通过完善模型设计和后处理工艺,达到可观的电子发射。

    利用3D打印工艺中的选择性激光熔化技术制备阴极热子组件,其基本原理为将三维模型输入系统,逐层打印、精密堆积,同时还应满足一体化的制备流程,即自下而上将阴极和热子整体连续打印出来。研究人员要重新设计阴极热子组件模型,并根据后续工艺处理的实施情况进行迭代优化。

    常规的阴极热子组件为套筒结构,不适用于3D打印的一体化成型流程,必须按各个组成部分的功能抽象成层次结构。为避免不同材料在打印过程中的界面连接问题,最好采用同一种粉末材料进行打印。钨粉是制备阴极钨海绵的原料,此外热子的丝料也主要采用钨或钨合金,因此考虑使用钨粉作为原料粉末,直接进行阴极热子组件的3D打印成型。

    3D打印的成型方式是自下而上的逐层精密堆积[11],具有方向性,在成型的过程中,必须考虑自身结构的支撑,即在上方连接结构未打印完成之前,下方分离的结构要有独立的支撑,否则无法成型。对支撑结构必须进行合理设计,使其能起到支撑作用的同时,必须在后期易于去除;在设计之初,须考虑所使用的去除手段不会对组件造成破坏。

    为达到对阴极热子组件的性能要求,使用3D打印的成型方式必须使热子具备足够大的电阻,即进行合理的热子结构设计。在保证自身结构支撑的同时,充分利用空间,尽量延长热子结构的总长。故将热子设计为竖直圆柱阵列,并将每个圆柱首尾顺次连接,形成串联。

    按以上设计原则进行多轮优化,适用于3D打印的阴极热子组件模型如图 1所示。如图所示,组件自下而上依次为阴极钨饼、致密层、支撑体、热子和热子引腿,这种模型能够与3D打印逐层精确堆积的成型过程相匹配,其中阴极发射体的孔隙度可通过密度进行调节,即控制激光的功率和扫描速率[12]

    图  1  适用于3D打印的阴极热子组件模型
    Figure  1.  Cathode-heater assembly model for 3D printing

    此外,3D打印适合成型复杂形状,该技术特性为热子引腿的构造带来更多想象空间,可以不再拘泥于简单圆柱形状。如图 2所示,异形台阶结构热子引腿的横截面积大于发热丝,能够减小电阻,通电加热时,可降低引腿发热,以提高热子加热阴极的效率;异形结构引腿的自身重量减小,可减轻热子的承重压力;异形结构引腿可增加与热子电位引出带的接触面积,方便可靠连接。

    图  2  热子引腿结构:(a)简单圆柱;(b)和(c)异形台阶
    Figure  2.  Potential pin structures of the heaters: (a)column; (b)and(c)specific steps

    将设计好的模型输入选择性激光熔化系统中,经过软件切片分析,并进行逐层打印。阴极热子组件一体化成型过程如图 3所示。在实际成型过程中,钨饼与致密层紧密相连,激光照射粉末,形成具有一定深度的熔池,构成密度渐变的过渡层。为精确检测钨饼密度,使用相同的打印参数,打印形状规则、易于测量的标定样块。如图 4所示,样块尺寸为11 mm×8.19 mm×6.03 mm,重量为7.8 g,计算后可得其相对密度为74.8%,即孔隙度约为25%。确定了钨饼的打印参数后,进行阴极热子组件的一体化打印。

    图  3  组件一体化打印过程示意
    Figure  3.  Integrated printing process of the cathode-heater assembly
    图  4  实验用钨饼的标定样块
    Figure  4.  Bulk sample of the tungsten emitter used in experiment

    共打印完成两组组件样品:(1)直径为5 mm样品,热丝丝径分别为0.25 mm、0.3 mm和0.4 mm; (2)直径为3 mm样品,丝径为0.25 mm的样品,其宏观形貌如图 5所示。在光学显微镜下(如图 6所示),打印出来的热丝表面粗糙,有粘连的颗粒,这源自选择性激光熔化技术具有的“球化效应”和“粉末粘附”加工特性[13-14]。丝越细,间距越小,虽然可以增大热子的电阻,但也增大了颗粒搭接造成短路的风险;此外,较细的热丝力学强度低,易发生整体变形,为后期去掉支撑结构带来更大的困难。综上所述,直径5 mm的组件应使用0.4 mm的丝径,直径3 mm的组件由于尺寸限制,热丝直径不应超过0.25 mm。

    图  5  3D打印的阴极热子组件样品宏观形貌
    Figure  5.  Macromorphology of the 3D-printed cathode-heater assembly sample
    图  6  3D打印的阴极热子组件样品光学形貌
    Figure  6.  Optical morphology of the 3D-printed cathode-heater assembly sample

    组件打印完成后,需要进行后续处理,从而使阴极热子组件具备稳定可靠的热发射性能。后处理工艺主要包括去除多余支撑结构、热丝绝缘防护和阴极发射活性物质浸渍等。

    支撑结构是圆柱阵列,去除后才能断开热丝与阴极的直接相连,使热丝串联并获得高于导线的热子电阻。采用高能激光照射的方式能够将支撑柱熔断,实现稳定可靠的去除操作。去除后的阴极热子组件如图 7所示。去除操作可在光学放大系统下进行精准控制,有效避免伤害中心支柱。中心支柱固定了热子与阴极的相对位置,构成组件,若受损将导致热子与阴极分离;此外要防止热丝受损,由于热丝整体串联,因此只要有一处断点就会产生成片地脱落。

    图  7  去除支撑结构的阴极热子组件样品
    Figure  7.  Cathode-heater assembly samples after removing the supporting columns

    去除支撑结构后,室温下热子电阻达到0.4Ω。为了直观地检测热子加热性能,在制备绝缘填料之前将样品固定安装在玻璃测试管内,抽真空,同时逐步增加热子电压。在21.6 W加热功率下,选择性激光熔化技术制备的热子温度能够达到1250℃,如见图 8所示。

    图  8  对选择性激光熔化制备的热子进行加热
    Figure  8.  Heating test for the heater prepared by SLM

    通电加热实验验证了去除支撑结构后,打印成型的热丝通过串联的方式能够使热子具备足够的电阻并正常发热。为保证热丝长时间可靠工作,需要进行绝缘防护,并降低热子与阴极温差。常用的处理方式是灌注氧化铝填料并烧结致密。将去除了支撑结构的组件放入模具中,灌注流动性良好的氧化铝粉末浆料,填充热子发热丝之间以及热子和阴极钨饼之间的空隙,干燥固化后从模具内脱出,最后在氢气气氛中高温烧结。图 9所示为直径5 mm和3 mm的样品绝缘防护处理,其中前者的热丝热子引腿打印成了台阶形状。

    图  9  阴极热子组件样品绝缘防护处理
    Figure  9.  Cathode-heater assembly samples after the insulation protection treatment

    为使阴极具备良好的发射能力,需要在阴极钨饼内浸渍发射盐,浸盐温度低于氧化铝绝缘填料的烧结温度,以减少损伤。清除多余发射盐后,3D打印阴极热子组件的后处理全部完成,随后对该新型阴极热子组件进行排气测试。

    首先对新型阴极热子组件的加热性能进行测试,阴极表面达到工作温度是热发射的前提。如图 10所示,将样品装架于玻璃管壳内,通电加热。通过提高电压逐步增加热子加热功率,表 1所示为在不同加热功率下,热子和阴极发射表面的温度。由表可知,随着加热功率的提高,阴极与热子的温差逐渐提高,保持在150~200℃的范围。常规阴极和钼筒组成的组件温差为100℃,这主要是由于新型阴极热子组件样品没有常规阴极钼筒组件的侧壁辅助传热。

    图  10  热子加热性能测试
    Figure  10.  Heating performance test of the heater
    表  1  加热功率及阴极热子温度
    Table  1.  Heating powers and the corresponding temperatures of cathode and heater
    热子电/V 热子加热功率/W 热子温度/℃ 阴极发射表面温度/℃ 阴极热子温差/℃
    6 12.30 983 830 153
    7 16.03 1050 883 167
    8 19.28 1129 941 188
    9 22.95 1176 987 189
    10 26.90 1233 1035 198
    11 30.25 1272 1071 201
    下载: 导出CSV 
    | 显示表格

    选用ϕ3 mm的组件样品进行电子发射测试,图 11显示了阴极发射表面宏观形貌。图中可观察到多孔结构,孔径明显大于传统车削加工表面,这种孔分布于整个表面,排列无明显规律。图 12为不同制备工艺得到的阴极表面显微形貌。如图所示,不同于常规粉末冶金工艺制备的阴极表面,选择性激光熔化工艺制备的阴极表面没有明显的粉末烧结多孔结构,且表面存在微裂纹,发射盐填充在这些裂缝之中。进一步能谱分析发现,新型阴极热子组件的阴极表面成分与浸渍铝酸盐阴极一致,如表 2

    图  11  阴极表面宏观形貌
    Figure  11.  Macromorphology of the cathode surface
    图  12  不同制备工艺得到的阴极表面微观组织:(a)选择性激光熔化工艺;(b)常规粉末冶金工艺
    Figure  12.  Microstructures of the cathode surfaces: (a)SLM; (b)the conventional powder metallurgy process
    表  2  新型阴极热子组件的阴极表面能谱分析
    Table  2.  Energy spectrum analysis of the new type cathode-heater assembly surface
    元素 质量分数/% 原子数分数/%
    O 13.90 59.73
    Al 3.36 8.55
    Ba 6.19 3.10
    W 76.55 28.62
    下载: 导出CSV 
    | 显示表格

    制备常规阴极钨基体时,可通过高温活化烧结形成烧结颈和固相迁移来增加相对密度,形成多孔体。在使用选择性激光熔化工艺打印阴极钨饼的过程中,高能激光将钨粉熔化,冷却凝固后叠加生长成钨饼,微观上已经不存在原有粉末颗粒的形貌特征。激光光斑直径受选择性激光熔化设备限定,为百微米量级,远小于阴极直径,打印时光斑照射钨粉,形成局部熔池,按一定路径移动后,完成整个单层的固化成型。非平衡的凝固过程和不同步的微观组织结构变化能够产生局部应力,形成微裂纹等缺陷[15-16]。调节激光功率和光斑移动速率能够影响熔池范围,控制微裂纹的分布和尺寸。因此,与常规阴极不同,由选择性激光熔化打印制备的阴极基体相对密度较低,可通过微裂纹的产生来控制活性物质浸渍,其宏观检测依然使用密度表征孔度。

    图 13为水冷阳极二极管外观形貌,利用水冷阳极二极管检测阴极热子组件发射电流密度。图 14显示了阴极温度为1100℃时,样品的拐点发射电流密度达到7.94 A∙cm-2,取得了可观的电子发射。

    图  13  测试用水冷阳极二极管外观形貌
    Figure  13.  Appearance of the water-cooled diode used in the cathode emission performance testing
    图  14  阴极热子组件的阴极发射伏安特性
    Figure  14.  Voltage current characteristics of the cathode emission for the cathode-heater assembly

    (1)根据3D打印技术的特殊成型方式和工艺特点,构建了合理可行的新型阴极热子组件三维模型,并使用选择性激光熔化设备实现了组件的一体化打印成型。

    (2)对新型组件进行多余支撑结构去除、热子绝缘防护和浸盐的后处理,阴极热子组件样品在1100℃下达到约8 A∙cm‒2的拐点发射电流密度。

    (3)选择性激光熔化技术通过微裂纹的产生形成非致密的阴极基体,浸渍发射盐后能够获取可观的电子发射,为阴极热子组件研制提供了新的设计方案,即将3D打印技术应用于组件的制备。利用增材制造成型复杂形状的零件,为新结构研发提供了新技术和新思路。

  • 图  1   累积叠轧工艺生产复合材料示意图[23]

    Figure  1.   Schematic illustration of the composite materials produced by ARB process[23]

    图  2   Ti粉与TNTZO粉的形貌以及铺粉式粉末冶金制备工艺流程示意图[14]:(a)纯Ti粉;(b)TNTZO粉;(c)Ti粉与β-Ti粉交替铺粉示意图;(d)制备Ti/TNTZO/Ti层状材料工艺流程图,冷轧方向(CRD),热轧方向(HRD),法向(ND),轧辊方向(TD)。

    Figure  2.   Schematic diagram of the spread powders by powder metallurgy[14]: (a) microstructure of the pure titanium powders; (b) microstructure of TNTZO alloy powders; (c) schematic diagram of alternate spreading of Ti powder and β-Ti powder; (d) processing route of the Ti/TNTZO/Ti sandwich composites, the cool rolling direction(CRD), the hot rolling direction (HRD), normal direction (ND), and transverse direction (ND) were marked near the sample.

    图  3   混粉式粉末冶金制备工艺流程示意图[15]

    Figure  3.   Schematic diagram of the powder metallurgy by powder mixing[15]

    图  4   Ti–Mo均质材料与异质层状材料工程应力应变曲线(a)和Ti–Mo异质层状材料纵向显微组织(b)[15]

    Figure  4.   Engineering stress-strain curves of the Ti–Mo homogeneous materials and heterogeneous laminated materials (a) and the longitudinal microstructure of the Ti–Mo heterogeneous laminated materials (b)[15]

    图  5   拉伸试验后Ti–3Al–4.5V–5Mo异质层状合金透射电子显微形貌:(a)低倍镜下高密度位错堆积在(α+β)基体与β纤维的界面周围;(b)、(d)β相界面附近位错堆积;(c)(α+β)基体界面附近的α-孪晶;(e)D区β相界面附近的马氏体[15]

    Figure  5.   Transmission electron microscope images of the Ti–3Al–4.5V–5Mo heterogeneous laminated alloys after tensile testing: (a) high density of dislocations around the interface between (α+β) matrix and β fiber in low magnification; (b), (d) dislocations pile-up in β phase near the interface; (c) twining in α phase near the interface; (e) martensitic transformation found in region D[15]

    图  6   微小裂纹在Ti/TNTZO界面处萌生[14]

    Figure  6.   Initiation of the micro-cracks at the Ti/TNTZO interface[14]

  • [1]

    Olszta M J, Cheng X G, Jee S S, et al. Bone structure and formation: A new perspective. Mater Sci Eng R, 2007, 58(3-5): 77 DOI: 10.1016/j.mser.2007.05.001

    [2]

    Falini G, Albeck S, Weiner S, et al. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 1996, 271(5245): 67 DOI: 10.1126/science.271.5245.67

    [3]

    Kochmann W, Reibold M, Goldberg R, et al. Nanowires in ancient Damascus steel. J Alloys Compd, 2004, 372(1-2): L15 DOI: 10.1016/j.jallcom.2003.10.005

    [4]

    Sherby O D, Wadsworth J. Ancient blacksmiths, the Iron Age, Damascus steels, and modern metallurgy. J Mater Proc Technol, 2001, 117(3): 347 DOI: 10.1016/S0924-0136(01)00794-4

    [5]

    Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA, 2015, 112(47): 14501 DOI: 10.1073/pnas.1517193112

    [6]

    Yan L M, Yu J H, Zhong Y X, et al. Influence of scanning on nano crystalline β–Ti alloys fabricated by selective laser melting and their applications in biomedical science. J Nanosci Nanotechnol, 2020, 20(3): 1605 DOI: 10.1166/jnn.2020.17340

    [7]

    Oh J M, Chan H P, Yeom J T, et al. High strength and ductility in low-cost Ti–Al–Fe–Mn alloy exhibiting transformation-induced plasticity. Mater Sci Eng A, 2020, 772(20): 138813

    [8] 刘强, 惠松骁, 宋生印, 等. 油气开发用钛合金油井管选材及工况适用性研究进展. 材料导报, 2019, 33(3): 115 DOI: 10.11896/cldb.201905017

    Liu Q, Hui S X, Song S Y, et al. Materials selection of titanium alloy OCTG used for oil and gas exploration and their applicability under service condition: a survey. Mater Rep, 2019, 33(3): 115 DOI: 10.11896/cldb.201905017

    [9]

    Hargrave B, Gonzalez M, Maskos K, et al. Titanium alloy tubing for HPHT OCTG applications // CORROSION 2010. San Antonio, 2010: 10318

    [10] 江洪, 陈亚杨. 钛合金在舰船上的研究及应用进展. 新材料产业, 2018(12): 13 DOI: 10.19599/j.issn.1008-892x.2018.12.003

    Jiang H, Chen Y Y. Research and application progress of titanium alloys on ships. Adv Mater Ind, 2018(12): 13 DOI: 10.19599/j.issn.1008-892x.2018.12.003

    [11] 王珂, 吴丽, 李永正, 等. 新型钛合金材料疲劳裂纹扩展试验研究. 舰船科学技术, 2020, 42(11): 9 DOI: 10.3404/j.issn.1672-7649.2020.11.002

    Wang K, Wu L, Li Y Z, et al. Experimental study on fatigue crack growth of new titanium alloy materials. Ship Sci Technol, 2020, 42(11): 9 DOI: 10.3404/j.issn.1672-7649.2020.11.002

    [12] 武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术, 2019, 37(3): 225 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.011

    Wu Q C, Ji Z, Jia C C, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.011

    [13]

    Wu X L, Zhu Y T. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett, 2017, 5(8): 527 DOI: 10.1080/21663831.2017.1343208

    [14]

    Zhang W D, Yang P, Cao Y K, et al. New Ti/β–Ti alloy laminated composite processed by powder metallurgy: Microstructural evolution and mechanical property. Mater Sci Eng A, 2021, 822: 141702 DOI: 10.1016/j.msea.2021.141702

    [15]

    Cao Y K, Zhang W D, Liu B, et al. Extraordinary tensile properties of titanium alloy with heterogeneous phase-distribution based on hetero-deformation induced hardening. Mater Res Lett, 2020, 8(7): 254 DOI: 10.1080/21663831.2020.1745919

    [16]

    Song Y, Yang R, Guo Z X. First principles estimation of bulk modulus and theoretical strength of titanium alloys. Mater Trans, 2002, 43(12): 3028 DOI: 10.2320/matertrans.43.3028

    [17]

    Kovacs P, Davidson J A. Chemical and electrochemical aspects of the biocompatibility of titanium and its alloys // Medical Applications of Titanium and Its Alloys: The Materials and Biological Issues. West Conshohocken, 1996: 163

    [18]

    Hall E O. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B, 1951, 64(9): 747 DOI: 10.1088/0370-1301/64/9/303

    [19]

    Petch N J. The cleavage strength of polycrystals. J Iron Steel Inst, 1953, 174: 25

    [20]

    Armstrong R, Codd I, Douthwaite R M, et al. The plastic deformation of polycrystalline aggregates. Phil Mag:J Theoret Exper Appl Phys, 1962, 7(73): 45

    [21]

    Qin L, Wang J, Wu Q, et al. In-situ observation of crack initiation and propagation in Ti/Al composite laminates during tensile test. J Alloys Compd, 2017, 712: 69 DOI: 10.1016/j.jallcom.2017.04.063

    [22]

    Hoseini-Athar M M, Tolaminejad B. Interface morphology and mechanical properties of Al–Cu–Al laminated composites fabricated by explosive welding and subsequent rolling process. Met Mater Int, 2016, 22(4): 670 DOI: 10.1007/s12540-016-5687-4

    [23]

    Karimi M, Toroghinejad M R. An alternative method for manufacturing high-strength CP Ti–SiC composites by accumulative roll bonding process. Mater Des, 2014, 59: 494 DOI: 10.1016/j.matdes.2014.03.040

    [24]

    Mo T, Chen J, Chen Z J, et al. Effect of intermetallic compounds (IMCs) on the interfacial bonding strength and mechanical properties of pre-rolling diffusion ARBed Al/Ti laminated composites. Mater Charact, 2020, 170: 110731 DOI: 10.1016/j.matchar.2020.110731

    [25]

    Huang M, Fan G H, Geng L, et al. Revealing extraordinary tensile plasticity in layered Ti–Al metal composite. Sci Rep, 2016, 6: 38461 DOI: 10.1038/srep38461

    [26] 雷虎, 崔舜, 周增林, 等. Cu/Mo/Cu平面层状复合材料的研究进展. 粉末冶金技术, 2011, 29(3): 218 DOI: 10.19591/j.cnki.cn11-1974/tf.2011.03.014

    Lei H, Cui S, Zhou Z L, et al. Research and development of Cu/Mo/Cu laminated composite material. Powder Metall Technol, 2011, 29(3): 218 DOI: 10.19591/j.cnki.cn11-1974/tf.2011.03.014

    [27] 李艳, 周增林, 惠志林, 等. 高界面结合强度铜/钼/铜叠层复合材料的制备研究. 粉末冶金技术, 2017, 35(1): 34 DOI: 10.3969/j.issn.1001-3784.2017.01.006

    Li Y, Zhou Z L, Hui Z L, et al. Preparation of Cu/Mo/Cu laminated composite material with high interfacial bonding strength. Powder Metall Technol, 2017, 35(1): 34 DOI: 10.3969/j.issn.1001-3784.2017.01.006

    [28]

    Xu S H, Du M, Li J, et al. Bio-mimic Ti–Ta composite with hierarchical “Brick-and-Mortar” microstructure. Materialia, 2019, 8: 100463 DOI: 10.1016/j.mtla.2019.100463

    [29]

    Ye N, Ren X P, Liang J H. Microstructure and mechanical properties of Ni/Ti/Al/Cu composite produced by accumulative roll bonding (ARB) at room temperature. J Mater Res Technol, 2020, 9(3): 5524 DOI: 10.1016/j.jmrt.2020.03.077

    [30]

    Ding H, Cui X P, Gao N N, et al. Fabrication of (TiB/Ti)–TiAl composites with a controlled laminated architecture and enhanced mechanical properties. J Mater Sci Technol, 2021, 62: 221 DOI: 10.1016/j.jmst.2020.06.011

    [31]

    Lei C X, Du Y, Zhu M, et al. Microstructure and mechanical properties of in situ TiC/Ti composites with a laminated structure synthesized by spark plasma sintering. Mater Sci Eng A, 2021, 812: 141136 DOI: 10.1016/j.msea.2021.141136

    [32] 徐圣航, 周承商, 刘咏. 金属–金属层状结构复合材料研究进展. 中国有色金属学报, 2019, 29(6): 1125

    Xu S H, Zhou C S, Liu Y. Research progress of metal-metal laminated structure composites. Chin J Nonferrous Met, 2019, 29(6): 1125

    [33]

    Kang Y, Mao W M, Chen Y J, et al. Influence of Nb content on grain size and mechanical properties of 18wt% Cr ferritic stainless steel. Mater Sci Eng A, 2016, 677: 453 DOI: 10.1016/j.msea.2016.09.080

    [34]

    Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater, 2005, 53(18): 4817 DOI: 10.1016/j.actamat.2005.06.025

    [35] 辛社伟, 周伟, 李倩, 等. 1500 MPa级新型超高强中韧钛合金. 中国材料进展, 2021, 40(6): 441 DOI: 10.7502/j.issn.1674-3962.202005029

    Xin D W, Zhou W, Li Q. A new type extra-high strength and medium toughness titanium alloy of Ti-1500. Mater China, 2021, 40(6): 441 DOI: 10.7502/j.issn.1674-3962.202005029

    [36]

    Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett, 2019, 7(10): 393 DOI: 10.1080/21663831.2019.1616331

    [37]

    Wu H, Geng L, Fan G H, et al. Nanoscale strain characterization of Ti3Al precipitate-reinforced Ti alloys. Mater Lett, 2017, 209: 182 DOI: 10.1016/j.matlet.2017.08.005

    [38]

    Guo T, Chen Y M, Cao R H, et al. Cleavage cracking of ductile-metal substrates induced by brittle coating fracture. Acta Mater, 2018, 152: 77 DOI: 10.1016/j.actamat.2018.04.017

    [39]

    Guo T, Qiao L J, Pang X L, et al. Brittle film-induced cracking of ductile substrates. Acta Mater, 2015, 99: 273 DOI: 10.1016/j.actamat.2015.07.059

    [40]

    Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study. Scr Mater, 2017, 135: 63 DOI: 10.1016/j.scriptamat.2017.03.030

    [41]

    Wu H, Fan G H, Huang M, et al. Fracture behavior and strain evolution of laminated composites. Compos Struct, 2017, 163: 123 DOI: 10.1016/j.compstruct.2016.12.036

    [42]

    Liu Z Q, Meyers M A, Zhang Z F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog Mater Sci, 2017, 88: 467 DOI: 10.1016/j.pmatsci.2017.04.013

    [43]

    He Y I, Yan Y J, Qiao L J, et al. In situ transmission electron microscopy study of alpha-brass nanoligament formation, microstructure evolution and fracture. Scr Mater, 2011, 65(5): 444 DOI: 10.1016/j.scriptamat.2011.05.032

    [44]

    Wu H, Fan G H, Jin B C, et al. Enhanced fracture toughness of TiBw/Ti3Al composites with a layered reinforcement distribution. Mater Sci Eng A, 2016, 670: 233 DOI: 10.1016/j.msea.2016.06.026

    [45]

    Zhou X L, Chen C Q. Molecular dynamic simulations of the mechanical properties of crystalline/crystalline and crystalline/amorphous nanolayered pillars. Comput Mater Sci, 2015, 101: 194 DOI: 10.1016/j.commatsci.2015.01.033

    [46]

    Liu M C, Lee C J, Lai Y H, et al. Microscale deformation behavior of amorphous/nanocrystalline multilayered pillars. Thin Solid Films, 2010, 518(24): 7295 DOI: 10.1016/j.tsf.2010.04.096

    [47]

    Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science, 2011, 331(6024): 1587 DOI: 10.1126/science.1200177

图(6)
计量
  • 文章访问数:  753
  • HTML全文浏览量:  218
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 录用日期:  2021-11-10
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2023-02-27

目录

/

返回文章
返回