高级检索

选区激光熔化成形GH4169合金研究现状

郭帅东, 卢林, 吴文恒, 张亮, 王继芬, 徐啸林

郭帅东, 卢林, 吴文恒, 张亮, 王继芬, 徐啸林. 选区激光熔化成形GH4169合金研究现状[J]. 粉末冶金技术, 2023, 41(5): 449-456, 480. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110008
引用本文: 郭帅东, 卢林, 吴文恒, 张亮, 王继芬, 徐啸林. 选区激光熔化成形GH4169合金研究现状[J]. 粉末冶金技术, 2023, 41(5): 449-456, 480. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110008
GUO Shuaidong, LU Lin, WU Wenheng, ZHANG Liang, WANG Jifen, XU Xiaolin. Research status of selective laser melting GH4169 alloys[J]. Powder Metallurgy Technology, 2023, 41(5): 449-456, 480. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110008
Citation: GUO Shuaidong, LU Lin, WU Wenheng, ZHANG Liang, WANG Jifen, XU Xiaolin. Research status of selective laser melting GH4169 alloys[J]. Powder Metallurgy Technology, 2023, 41(5): 449-456, 480. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110008

选区激光熔化成形GH4169合金研究现状

基金项目: 上海市青年科技启明星计划资助项目(20QB1401100)
详细信息
    通讯作者:

    卢林: E-mail: lulinws@163.com

  • 中图分类号: TF124; TG142.3

Research status of selective laser melting GH4169 alloys

More Information
  • 摘要:

    介绍了选区激光熔化成形GH4169合金存在的球化、孔洞等常见缺陷的形成机理及工艺控制现状,重点分析了激光功率、扫描速率、铺粉厚度等工艺参数对选区激光熔化成形GH4169合金成形件组织性能的影响规律,以及热处理、颗粒增强等组织性能调控手段对选区激光熔化成形GH4169合金组织性能影响。从工艺控制、材料强化设计等方面对选区激光熔化成形GH4169合金进行展望,认为利用选区激光熔化成形技术开展颗粒增强GH4169复合材料的设计与成形是进一步提升选区激光熔化成形GH4169合金性能的有效途径。

    Abstract:

    The formation mechanism and process control of the common defects in selective laser melting GH4169 alloys were briefly introduced, such as spheroidization and holes. The effects of laser power, scanning rate, and powder thickness on the microstructure and mechanical properties of the GH4169 alloys during selective laser melting were emphatically analyzed, and the influences of heat treatment and particle reinforcement on the microstructure and mechanical properties of GH4169 alloy were investigated. Finally, the prospect of the selective laser melting GH4169 alloys was presented from the aspects of process control trend and material strengthening design. It was considered that the design and forming of the particle-reinforced GH4169 composites by selective laser melting were the effective way to further improve the performance of the GH4169 alloys.

  • 烧结是将粉末或粉末压坯加热到低于其基本成分熔点温度,并在适当的气氛或真空条件下,以一定的方法和速度冷却到室温的过程。烧结使粉末颗粒之间发生粘结,压坯中颗粒相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,通过物质的传递,总体积收缩,密度增加,烧结体的强度增加,最后成为具有某种显微结构的致密多晶烧结体,最终获得所需力学性能的制品或材料。烧结是粉末冶金工艺中的一个重要环节,对最终产品质量有着决定性影响。烧结产生的缺陷及问题难以通过后续工艺调节或弥补,所以深入细致地对烧结行为进行研究探索是十分必要的[13]

    钼(Mo)是元素周期表中VIB族元素,原子序数42,原子量95.94。高熔点与高沸点是Mo的显著特点之一,其熔点为2620 ℃,仅次于C、W、Re、Ta和Os。由于Mo的熔点高,属难熔金属,Mo及Mo合金主要采用粉末冶金方法制备。首先获得高纯度Mo粉,再加入所需合金元素粉末,经油压机模压或冷等静压成形,最终经低于熔点的温度烧结成Mo合金制品。在生产实践中,科研人员对原料Mo粉、烧结后的Mo产品性能研究较多,对烧结过程,仅限于记录烧结温度、气氛、升温保温时间等工艺参数,对Mo合金本身在烧结过程中的变化研究较少。本文采用原位测量法,对比研究了放电等离子烧结与真空热压烧结法制备Mo–30W合金的烧结行为,更加准确地掌握Mo合金的烧结收缩和致密化规律。

    实验采用商用Mo粉和W粉,Mo粉费氏粒度为3.5 μm,W粉费氏粒度为3.0 μm。经过混料、压制成形,制备成ϕ20 mm×15 mm试样,分别使用放电等离子烧结(spark plasma sintering,SPS)设备和真空热压设备进行烧结实验,压力设定为35 MPa。采用排水法测试试样烧结密度,使用扫描电子显微镜(scanning electron microscope,SEM)观察试样断口形貌。图1为研究Mo合金烧结行为的实验系统,图中Mo合金样品的直径与模具阴模孔径相同,烧结过程中保持不变,上模冲、下模冲位置固定。烧结开始时微加压力于样品,行程反馈清零,上下模冲压力保持恒定。当系统开始加热时,样品轴向的变化通过上模冲实时表现出来,精度为微米级。

    图  1  放电等离子烧结系统示意图
    Figure  1.  Schematic diagram of the spark plasma sintering system

    实验主要目的是通过样品在不同温度下的轴向微小变化来反映Mo合金在烧结过程中的行为,这种直观反映Mo合金在高温烧结过程中的变化在行业中尚未发现相关研究信息。直观研究Mo合金烧结变化更加有助于深入掌握Mo合金的烧结规律,为Mo合金产品质量提升和行业进步产生积极的推动作用。

    根据石墨模具内径大小确定Mo–30W合金样品直径为20 mm、高度为15 mm。将试样装入模具,包好石墨毡保温,置于上下模冲的中心位置。调整上下模冲距离,使油缸压力稳定在0.3 MPa,将此位置作为试样零点。关闭炉门,抽真空。在真空度达到10 Pa以下时,调节电流,试样开始升温,记录试样轴向伸缩试验数据。

    图2为Mo–30W合金试样轴向伸缩和烧结温度随烧结时间的变化趋势。由图可知,温度曲线从室温开始上升,20 min后温度上升到1500 ℃,随后上升速度变缓,基本进入保温阶段。44 min时断电随炉自然降温,68 min时温度已接近室温。在起始3 min,Mo–30W合金试样轴向有微小收缩;随后随温度升高试样开始膨胀,在约13 min、1200 ℃膨胀达到最大值;之后开始收缩,且收缩速度较快;30 min、1600 ℃时试样收缩趋势变缓。44 min、1600 ℃时断电降温开始有明显较大的收缩,温度接近室温时,收缩基本停止。

    图  2  Mo–30W合金试样轴向伸缩和烧结温度随烧结时间的变化
    Figure  2.  Axial shrinkage and sintering temperature of the Mo–30W alloy specimens at different sintering times

    一般认为粉末冶金的烧结过程按温度–时间关系大致可划分黏结阶段、烧结颈长大及黏塑性流动阶段、闭孔隙球化和缩小阶段等三个界限不十分明显的阶段。黏结阶段属烧结初期,颗粒间原始接触点的原子由于温度升高、振幅加大、扩散加剧,使颗粒间的接触由点扩展到面。在这一阶段中颗粒内的晶粒不发生变化,颗粒外形也基本未变,整个坯体不发生明显的收缩,密度增加极微[47]

    Mo–30W合金属于无限固溶[8],在1200 ℃之前整个坯体不但没有发生收缩,反而有明显的膨胀现象,轴向膨胀量约为6%左右。这是由于原子温度升高,振幅加大颗粒体积膨胀,反映在宏观就是坯体有明显的膨胀现象。之前坯体在烧结过程中难以进行直接观测,所以不能深入了解坯体烧结时的变化规律。

    在1200~1600 ℃为烧结颈长大及黏塑性流动阶段,整个坯体收缩显著,而且收缩速度较快,与理论认识相符。主要是由于孔隙大量消失使坯体迅速收缩。在烧结颈长大及黏塑性流动阶段,原子向颗粒结合面大量迁移使烧结颈长大,颗粒间距缩小,形成连续的孔隙网络;同时由于晶粒长大,晶界越过孔隙移动,被晶界扫过的地方,孔隙大量消失。这一阶段坯体收缩、密度和强度显著增加。

    图2所示,整个坯体在1600 ℃保温一段时间后,收缩趋势变缓,收缩缓慢。相对于原始坯体,试样轴向收缩量约为6%左右,相对于膨胀最大值,试样轴向收缩量可达12%左右。这是因为在闭孔隙球化和缩小阶段,多数孔隙被完全分隔,闭孔数量大为增加,孔隙形状趋近于球形并不断缩小。在这个阶段,整个坯体收缩缓慢,主要是靠小孔的消失和孔隙的减少来实现。在降温开始后,整个坯体又产生一个较大的收缩。在降温阶段,整个坯体已被烧结呈现金属化,具有明显的金属特征所以随着温度的降低会产生较大的收缩。降温完成后,整个烧结体收缩率可达15%以上,这与中频烧结类似合金的收缩率基本相符。

    通过实验及分析可以确定,Mo–30W合金样品烧结规律为:在烧结升温开始之时,样品有微小收缩,随后随温度升高,试样开始膨胀;温度升到一定程度(1200 ℃)时,样品膨胀达到最大值,之后开始收缩,且收缩速度较快;随着温度继续升高,样品收缩趋势变缓;随着降温的开始,样品有明显较大的收缩,在温度接近室温时,收缩基本停止。

    图3为Mo–30W合金试样经真空热压烧结后,在烧结温度1600 ℃时,试样轴向伸缩率随时间的变化趋势。当烧结温度一定,随着保温时间的延长,Mo–30W合金样品的收缩率逐渐增大。在保温180 min时,收缩率达到最大值9%,此时样品的烧结完成,对应的相对密度也达最大值89.98%。

    图  3  1600 ℃真空热压烧结的Mo–30W合金试样收缩率随烧结时间的变化
    Figure  3.  Shrinkage of the Mo–30W alloys by vacuum hot pressing sintering at 1600 ℃ at different sintering times

    真空热压烧结的加热方式为电阻辐射加热,在整个烧结过程中,石墨模具、Mo–30W合金样品及真空热压烧结炉腔体的温度基本一致,石墨模具和Mo–30W合金样品一同收缩,所以上模冲的位移变化并不仅代表Mo–30W合金的位移变化。在放电等离子烧结过程中,烧结的热量主要作用在Mo–30W合金坯料上,整个烧结腔体的温度远低于Mo–30W合金坯料的温度,所以上模冲的位移变化能代表Mo–30W合金的位移变化。

    放电等离子烧结是一种比较特殊的烧结方式,样品的烧结质量对本文提出的Mo–30W合金样品烧结规律是一个重要条件,如果烧结质量不好,其烧结规律也不具备普遍意义,从而失去参考价值。样品的烧结密度是判断烧结质量的关键指标,以下是采用排水法测出的样品烧结后的密度,结果如表1所示。

    表  1  Mo–30W合金样品烧结密度
    Table  1.  Sintering density of the Mo–30W alloys
    烧结方法压坯密度 / (g·cm−3)压坯相对密度 / %烧结密度 / (g·cm−3)烧结相对密度 / %
    放电等离子烧结8.9169.7011.8993.00
    真空热压烧结8.9069.6211.5089.98
    下载: 导出CSV 
    | 显示表格

    表1中数据可以看出,Mo–30W合金样品经放电等离子烧结后密度有大幅提高,并且相对密度达到93%,可以判断基本达到烧结状态。Mo–30W合金样品原始高度为15 mm,烧结过程中样品直径受限,基本没有产生变化,降温后样品高度收缩3 mm,收缩率达到20%,相对于实测样品密度升高约25%,两者之间相互吻合。Mo–30W合金经真空热压烧结后,样品相对密度达到89.98%,样品原始高度为15 mm,烧结过程中样品直径受限,基本没有产生变化,降温后样品高度收缩2 mm,收缩率达到13.33%。经对比可发现,经放电等离子烧结Mo–30W合金的相对密度高于经真空热压烧结Mo–30W合金的相对密度。放电等离子烧结与真空热压烧结法均为加压和加热同时进行,但二者加热方式完全不同,真空热压烧结法是采用电阻辐射加热的方式实现烧结,放电等离子烧结是利用直流脉冲电流直接通电烧结的加压烧结方式,通过调节脉冲直流电的大小来控制升温速率和烧结温度。直流脉冲电流的主要作用是产生高温等离子体、放电冲击压力、焦耳热和电场扩散作用,同时放电效应能够清除粉末颗粒表面及内部残留的气体,清洁粉末颗粒表面,提高了颗粒的烧结能力[912]。放电等离子烧结与真空热压烧结相比,能够在更短的时间内获得高致密的材料。

    图4为Mo–30W合金样品经放电等离子烧结和真空热压烧结后的扫描电子显微形貌,从图中可以看出,经放电等离子烧结的样品虽然存在较多的孔洞,但晶粒间界线清晰、平直,与正常Mo合金烧结微观形貌相似,说明样品已产生金属化,已基本完成烧结过程,晶粒大小约30 μm。样品中孔洞较多是放电等离子烧结特点决定,放电等离子烧结是一种快速烧结方式[1315],升温速度快,烧结时间较短,晶体内孔洞虽然已经产生了圆化、迁移、融合,但还没有完全收缩消除,这也印证了所测样品相对密度只有93%的结果。经真空热压烧结的样品晶粒之间结合较紧密,晶界处存在孔洞,晶粒大小约50 μm。

    图  4  放电等离子烧结(a)和真空热压烧结(b)Mo–30W合金扫描电子显微形貌
    Figure  4.  SEM images of the Mo–30W alloys by SPS (a) and vacuum hot pressing sintering (b)

    通过对Mo–30W合金样品的密度和形貌的分析,发现采用放电等离子烧结方法,Mo–30W合金样品产生明显收缩,完成了基本的烧结行为,具备粉末冶金烧结过程的全部特点。随后对纯Mo、Mo–Cu合金、MoS2等不同的样品进行测试发现,不论是纯金属还是合金,或者是非金属都具有相似的烧结行为,这说明本文所探究的粉末冶金烧结行为具有普遍的适用性。

    (1)采用放电等离子烧结制备Mo–30W合金时,在烧结初期,1200 ℃之前坯体不但没有收缩,反而有较为明显的膨胀现象,膨胀最大可达6%。

    (2)采用放电等离子烧结制备Mo–30W合金时,Mo–30W合金样品粉末冶金烧结基本规律为:在烧结升温开始时,样品有微小收缩,并随温度升高试样开始膨胀;温度升到一定程度(如1200 ℃)时,样品膨胀达到最大值,随后开始收缩,且收缩速度较快;随着温度继续升高,样品收缩趋势变缓;随着降温的开始,样品有明显较大的收缩,当温度接近室温时,收缩基本停止。

    (3)使用放电等离子烧结设备可以对Mo–30W合金样品进行烧结,其相对密度可达到93%,基本完成烧结。

    (4)在直观反映Mo–30W合金烧结过程中的收缩变化规律方面,放电等离子烧结优于真空热压烧结。

  • 图  1   选区激光熔化原理图

    Figure  1.   Schematic diagram of the selective laser melting

    图  2   球化示意图

    Figure  2.   Schematic diagram of the spherification

    图  3   GH4169合金试样在650 ℃应力应变曲线[46]

    Figure  3.   Stress-strain curves of the GH4169 alloy samples at 650 ℃[46]

    图  4   添加不同质量分数TiC增强Inconel 718复合材料拉伸应变应力曲线[51]

    Figure  4.   Tensile strain-stress curves of the Inconel 718 composites doped by TiC particles in different mass fraction[51]

    图  5   GH4169复合材料导热性与能量输入的关系[55]

    Figure  5.   Relationship between the thermal conductivity and energy input of the GH4169 composites[55]

    表  1   选区激光熔化、锻造和铸造成形特点[10,1321]

    Table  1   Characteristic of SLM, forging, and casting[10,1321]

    优缺点 选区激光熔化 锻造 铸造
    优点 不受几何形状和复杂度的限制,材料利用率较高,近净成形,成形件精度、相对密度较高,冷却速度快,组织较为细小,在室温和高温下力学
    性能优异。
    可大批量生产,成形尺寸较大的工件,孔洞、裂纹缺陷较少,成形质量好,力学性能优异。 可大批量生产,可成形复杂结构件,可制作较高尺寸和低表面粗糙度的工件。
    缺点 能耗较大,成形尺寸有限。会存在球化、微小孔洞、裂纹等缺陷。具有沿沉积方向定向长大的柱状组织。高温度梯度下产生的残余应力。 成形件几何形状受限制,材料利用率低,工艺复杂,周期长,成本高,易形成脆性相。 尺寸精度低,生产周期较长,易产生缩松缩孔等缺陷,易形成较为粗大的晶粒,组织不均匀,易产生大量宏观偏析和有害相。
    下载: 导出CSV
  • [1] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展. 机械制造与自动化, 2013, 42(4): 1

    Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology. Mach Build Autom, 2013, 42(4): 1

    [2]

    Guo N N, Leu M C. Additive manufacturing: technology, applications and research needs. Front Mech Eng, 2013, 8(3): 215 DOI: 10.1007/s11465-013-0248-8

    [3] 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术. 材料工程, 2016, 44(2): 122

    Zhang X J, Tang S Y, Zhao H Y, et al. Research status and key technologies of 3D printing. J Mater Eng, 2016, 44(2): 122

    [4] 李昂, 刘雪峰, 俞波, 等. 金属增材制造技术的关键因素及发展方向. 工程科学学报, 2019, 41(2): 159

    Li A, Liu X F, Yu B, et al. Key factors and developmental directions with regard to metal additive manufacturing. Chin J Eng, 2019, 41(2): 159

    [5]

    Gao Y, Zhang D Y, Cao M, et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process. Mater Sci Eng A, 2019, 767: 138327 DOI: 10.1016/j.msea.2019.138327

    [6]

    Ding R G, Huang Z W, Li H Y, et al. Electron microscopy study of direct laser deposited IN718. Mater Charact, 2015, 106: 324 DOI: 10.1016/j.matchar.2015.06.017

    [7] 王会杰, 崔照雯, 孙峰, 等. 激光选区熔化成形技术制备高温合金GH4169复杂构件. 粉末冶金技术, 2016, 34(5): 368

    Wang H J, Cui Z W, Sun F, et al. Superalloy GH4169 complicated components prepared by selective laser melting forming technique. Powder Metall Technol, 2016, 34(5): 368

    [8]

    Holland S, Wang X Q, Chen J, et al. Multiscale characterization of microstructures and mechanical properties of Inconel 718 fabricated by selective laser melting. J Alloys Compd, 2018, 784: 182

    [9]

    Popovich A A, Sufiiarov V S, Polozov I A, et al. Microstructure and mechanical properties of Inconel 718 produced by SLM and subsequent heat treatment. Key Eng Mater, 2015, 651-653: 665 DOI: 10.4028/www.scientific.net/KEM.651-653.665

    [10]

    Trosch T, Strößner J, Völkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater Lett, 2016, 164: 428 DOI: 10.1016/j.matlet.2015.10.136

    [11] 陈飞. 选区激光熔化成形TiN/Inconel 718复合材料组织及力学性能研究[学位论文]. 长春: 吉林大学, 2020

    Chen F. Study on Microstructures and Mechanical Properties of TiN /Inconel 718 Composites Fabricated by Selective Laser Melting [Dissertation]. Changchun: Jilin University, 2020

    [12]

    Strößner J, Terock M, Glatzel U. Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM). Adv Eng Mater, 2015, 17(8): 1099 DOI: 10.1002/adem.201500158

    [13] 冯喆. 选区激光熔化成形Inconel718合金显微组织和高温力学性能的研究[学位论文]. 北京: 北京工业大学, 2018

    Feng Z. Study on the Microstructure and High Temperature Mechanical Properties of Alloy Processed by SLM [Dissertation]. Beijing: Beijing University of Technology, 2018

    [14] 朱学超, 魏青松, 孙春华. 激光选区熔化成形S136模具钢热处理组织和性能研究. 粉末冶金技术, 2019, 37(2): 83

    Zhu X C, Wei Q S, Sun C H, Study on microstructures and properties of S136 die steel formed by selective laser melting after heat treatment. Powder Metall Technol, 2019, 37(2): 83

    [15] 张冬云, 高阳, 曹明, 等. SLM成形Inconel 718合金的组织性能调控研究. 上海航天, 2020, 37(3): 82

    Zhang D Y, Gao Y, Cao M, et al. Study on regulation of microstructure and mechanical properties of SLM-processed Inconel 718 alloy. Aerosp Shanghai, 2020, 37(3): 82

    [16] 吴灵芝, 温耀杰, 张百成, 等. 选区激光熔化铝合金制备研究现状. 粉末冶金技术, 2021, 39(6): 549

    Wu L Z, Wen Y J, Zhang B C, et al. Research status of selective laser melting aluminum alloys, Powder Metall Technol, 2021, 39(6): 549

    [17] 刘泽程, 王国伟, 肖祥友, 等. 选择性激光熔化镍基高温合金的工艺优化. 粉末冶金技术, 2021, 39(1): 81

    Liu Z C, Wang G W, Xiao X Y, et al. Process optimization of selective laser melting nickel-based superalloy. Powder Metall Technol, 2021, 39(1): 81

    [18] 许阳, 班乐, 肖志瑜. 选择性激光熔化成形CoCrWMo合金工艺优化及摩擦磨损性能. 粉末冶金技术, 2021, 39(6): 505

    Xu Y, Ban L, Xiao Z Y, et al. Process optimization and friction and wear properties of CoCrWMo alloys fabricated by selective laser melting. Powder Metall Technol, 2021, 39(6): 505

    [19] 杨占尧, 赵敬云. 增材制造与3D打印技术及应用. 北京: 清华大学出版社, 2017

    Yang Z Y, Zhao J Y. Additive Manufacturing and 3D Printing Technology and Applications. Beijing: Tsinghua University Press, 2017

    [20]

    Popovich V A, Borisov E V, Popovich A A, et al. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting. Mater Des, 2017, 131: 12 DOI: 10.1016/j.matdes.2017.05.065

    [21]

    Teng Q, Li S, Wei Q S, et al. Investigation on the influence of heat treatment on Inconel 718 fabricated by selective laser melting: Microstructure and high temperature tensile property. J Manuf Processes, 2021, 61: 35 DOI: 10.1016/j.jmapro.2020.11.002

    [22] 李剑. IN718合金的选区激光熔化成形工艺及性能研究[学位论文]. 哈尔滨: 哈尔滨理工大学, 2018

    Li J. Process and Properties of Ni-Based 718 Alloy Formed by Selective Laser Melting [Dissertation]. Harbin: Harbin University of Science and Technology, 2018

    [23] 贾清波. Ni基高温合金及其复合材料选区激光熔化成形工艺、组织及性能[学位论文]. 南京: 南京航空航天大学, 2015

    Jia Q B, Selective Laser Melting Fabrication of Nickel-Based Superalloys and Its Composites: Process, Microstructure and Property [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015

    [24] 张颖, 顾冬冬, 沈理达, 等. INCONEL系镍基高温合金选区激光熔化增材制造工艺研究. 电加工与模具, 2014(4): 38

    Zhang Y, Gu D D, Shen L D, et al. Study on selective laser melting additive manufacturing process of INCONEL Ni-based superalloy. Electromach Mould, 2014(4): 38

    [25]

    Balbaa M, Mekhiel S, Elbestawi M, et al. On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Mater Des, 2020, 193: 108818 DOI: 10.1016/j.matdes.2020.108818

    [26]

    Moussaoui K, Rubio W, Mousseigne M, et al. Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties. Mater Sci Eng, 2018, 735: 182 DOI: 10.1016/j.msea.2018.08.037

    [27] 张国会, 郭绍庆, 黄帅, 等. 选区激光熔化技术制备GH4169合金的致密度研究. 激光与光电子学进展, 2020, 57(3): 163

    Zhang G H, Guo S Q, Huang S, et al. Relative density of GH4169 superalloy prepared by selective laser melting. Laser Optoelectron Prog, 2020, 57(3): 163

    [28]

    Wang H Y, Wang B B, Wang L, et al. Impact of laser scanning speed on microstructure and mechanical properties of Inconel 718 alloys by selective laser melting. China Foundry, 2021, 18(3): 170 DOI: 10.1007/s41230-021-9011-7

    [29] 程勇. 激光选区熔化成形GH4169残余应力和变形研究[学位论文]. 武汉: 华中科技大学, 2019

    Cheng Y. Study of the Residual Stress and Deformation of GH4169 Fabricated by Selective Laser Melting [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2019

    [30]

    Lesyk D A, Martinez S, Mordyuk B N, et al. Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress. Surf Coat Technol, 2020, 381: 125136 DOI: 10.1016/j.surfcoat.2019.125136

    [31]

    Lu Y J, Wu S Q, Gan Y L, et al. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt Laser Technol, 2015, 75: 197 DOI: 10.1016/j.optlastec.2015.07.009

    [32]

    Sufiiarov V S, Popovich A A, Borisov E V, et al. The effect of layer thickness at selective laser melting. Proced Eng, 2017, 174: 126 DOI: 10.1016/j.proeng.2017.01.179

    [33] 杜胶义. GH4169镍基合金粉末选区激光熔化基础工艺研究[学位论文]. 太原: 中北大学, 2014

    Du J Y. Research on Process Experiment of Selective Laser Melting with GH4169 Nickel-Based Alloy Powder [Dissertation]. Taiyuan: North University of China, 2014

    [34] 贾炅昱, 刘奋成, 刘丰刚, 等. 选区激光熔化增材制造Inconel 718合金的孔隙缺陷和拉伸性能. 热加工工艺, 2020, 49(18): 1

    Jia J Y, Liu F C, Liu F G, et al. Porosity defects and tensile property of Inconel 718 superalloy by selective laser melting additive manufacturing. Hot Working Technol, 2020, 49(18): 1

    [35]

    Yang H H, Meng L, Luo S C, et al. Microstructural evolution and mechanical performances of selective laser melting Inconel 718 from low to high laser power. J Alloys Compd, 2020, 828: 154473 DOI: 10.1016/j.jallcom.2020.154473

    [36] 魏建锋, 武美萍, 韩基泰. 扫描策略对选区激光熔化成形Inconel 718表面质量的影响机制. 应用激光, 2020, 40(4): 621

    Wei J F, Wu M P, Han J T. Mechanism of the effect of scanning strategy on the surface quality of Inconel 718 formed by SLM. Appl Laser, 2020, 40(4): 621

    [37]

    Choi J P, Shin G H, Yang S, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technol, 2017, 310: 60 DOI: 10.1016/j.powtec.2017.01.030

    [38]

    Liu S Y, Li H Q, Qin C X, et al. The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718. Mater Des, 2020, 191: 108642 DOI: 10.1016/j.matdes.2020.108642

    [39]

    Jia Q B, Gu D D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J Alloys Compd, 2014, 585: 713 DOI: 10.1016/j.jallcom.2013.09.171

    [40] 闫岸如, 杨恬恬, 王燕灵, 等. 变能量激光选区熔化IN718镍基超合金的成形工艺及高温机械性能. 光学精密工程, 2015, 23(6): 1695 DOI: 10.3788/OPE.20152306.1695

    Yan A R, Yang T T, Wang Y L, et al. Forming process and high-temperature mechanical properties of variable energy laser selective melting manufacturing IN718 superalloy. Opt Precis Eng, 2015, 23(6): 1695 DOI: 10.3788/OPE.20152306.1695

    [41]

    Yi J H, Kang J W, Wang T J, et al. Effect of laser energy density on the microstructure, mechanical properties, and deformation of Inconel 718 samples fabricated by selective laser melting. J Alloys Compd, 2019, 786: 481 DOI: 10.1016/j.jallcom.2019.01.377

    [42]

    Zheng M, Wei L, Chen J, et al. On the role of energy input in the surface morphology and microstructure during selective laser melting of Inconel 718 alloy. J Mater Res Technol, 2021, 11: 392 DOI: 10.1016/j.jmrt.2021.01.024

    [43]

    Aydinöz M E, Brenne F, Schaper M, et al. On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading. Mater Sci Eng A, 2016, 669: 246 DOI: 10.1016/j.msea.2016.05.089

    [44]

    Pröbstle M, Neumeier S, Hopfenmüller J, et al. Superior creep strength of a nickel-based superalloy produced by selective laser melting. Mater Sci Eng A, 2016, 674: 299 DOI: 10.1016/j.msea.2016.07.061

    [45]

    Feng K Y, Liu P, Li H X, et al. Microstructure and phase transformation on the surface of Inconel 718 alloys fabricated by SLM under 1050 °C solid solution + double ageing. Vacuum, 2017, 145: 112 DOI: 10.1016/j.vacuum.2017.08.044

    [46]

    Cao M, Zhang D Y, Gao Y, et al. The effect of homogenization temperature on the microstructure and high temperature mechanical performance of SLM-fabricated IN718 alloy. Mater Sci Eng A, 2021, 801: 140427 DOI: 10.1016/j.msea.2020.140427

    [47]

    Yu W H, Sing S L, Chua C K, et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review. Prog Mater Sci, 2019, 104: 330 DOI: 10.1016/j.pmatsci.2019.04.006

    [48]

    Nguyen Q B, Zhu Z, Chua B W, et al. Development of WC-Inconel composites using selective laser melting. Arch Civil Mech Eng, 2018, 18(4): 1410 DOI: 10.1016/j.acme.2018.05.001

    [49]

    Xia M J, Gu D D, Ma C L, et al. Microstructure evolution, mechanical response and underlying thermodynamic mechanism of multi-phase strengthening WC/Inconel 718 composites using selective laser melting. J Alloys Compd, 2018, 747: 684 DOI: 10.1016/j.jallcom.2018.03.049

    [50]

    Gu D D, Zhang H M, Dai D H, et al. Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance. Composites Part B, 2018, 163: 585

    [51]

    Wang Y C, Shi J, Wang Y. Reinforcing Inconel 718 superalloy by nano-TiC particles in selective laser melting // ASME 2015 International Manufacturing Science Engineering Conference. Charlotte, 2015: 8

    [52]

    Wang Y C, Shi J, Lu S Q, et al. Selective laser melting of graphene-reinforced Inconel 718 superalloy: evaluation of microstructure and tensile performance. J Manuf Sci Eng, 2017, 139(4): 041005 DOI: 10.1115/1.4034712

    [53]

    Xiao W H, Lu S Q, Wang Y C, et al. Mechanical and tribological behaviors of graphene/Inconel 718 composites. Trans Nonferrous Met Soc China, 2018, 28(10): 1958

    [54]

    Ho I T, Hsu T H, Chang Y J, et al. Effects of CoAl2O4 inoculants on microstructure and mechanical properties of IN718 processed by selective laser melting. Addit Manuf, 2020, 35: 101328

    [55]

    Hassanin A E, Scherillo F, Prisco U, et al. Selective laser melting of Cu-inconel 718 powder mixtures. J Manuf Processes, 2020, 59: 679 DOI: 10.1016/j.jmapro.2020.10.039

  • 期刊类型引用(1)

    1. 陈昆昆,孟晗琪,杨阳. 致密铼粒的制备研究. 广州化工. 2024(17): 34-36 . 百度学术

    其他类型引用(0)

图(5)  /  表(1)
计量
  • 文章访问数:  2175
  • HTML全文浏览量:  588
  • PDF下载量:  54
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-12-30
  • 录用日期:  2021-12-30
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2023-10-27

目录

/

返回文章
返回