Microstructure and high temperature tensile properties of powder metallurgy Mo−Re alloys
-
摘要:
采用粉末冶金结合高温压力加工制备了Mo−14Re和Mo−42Re合金棒材,观察与测试了Mo−Re合金的微观组织、相组成、室温及高温拉伸性能,并结合断口形貌分析了合金断裂机制。结果表明,经高温压力加工后,Mo−Re合金晶粒由等轴状转变为拉长的纤维状,相对密度达99.6%以上。Re固溶于Mo中,使Mo−Re合金晶格常数从Mo−14Re的3.1384 Å减小到Mo−42Re的3.1304 Å,导致晶格畸变程度增大。当Re质量分数从14%增加到42%,Mo−Re合金的室温及高温强度得到大幅提升。随测试温度升高,合金强度下降,Mo−14Re断后伸长率有所下降,而Mo−42Re断后伸长率呈上升趋势。Mo−14Re室温断口呈木纹状撕裂型断裂,1100~1300 ℃断口呈韧窝状,在1500 ℃时塑性变形主要由晶界滑移产生。Mo−42Re室温断口为穿晶断裂,1100~1500 ℃断口为完全的韧窝状,塑性变形由韧窝产生的非均匀变形提供。
Abstract:Mo−14Re and Mo−42Re alloy bars were prepared by powder metallurgy and hot press working. The microstructure, phase composition, and tensile properties at room and high temperature were observed and tested, and the fracture mechanism of Mo−Re alloys was analyzed, combined with the fracture morphology. The results show that, after the hot press working, the Mo−Re alloy grains change from equiaxed to elongated fibrous, and the relative density of alloy bars is more than 99.6%. The solid solution of Re in Mo reduces the lattice constant of Mo−Re alloy from 3.1384 Å of Mo−14Re to 3.1304 Å of Mo−42Re, leading to the increase of lattice distortion. The room and high temperature strength of Mo−Re alloys are greatly improved with the increase of Re mass fraction from 14% to 42%. With the increase of test temperature, the strength of Mo−Re alloys decreases, the elongation of Mo−14Re alloys decreases slightly, while that of Mo−42Re increases. The room temperature fracture of Mo−14Re alloys exhibits a wood-grain tearing fracture, the fracture at 1100~1300 ℃ is dimple, and the plastic deformation is mainly caused by grain boundary slip at 1500 ℃. The room temperature fracture of Mo−42Re alloys shows a transgranular fracture, the fracture at 1100~1500 ℃ is completely dimpled, and the plastic deformation at high temperature is provided by the non-uniform deformation produced by dimple.
-
Keywords:
- Mo−Re alloys /
- microstructure /
- tensile property /
- fracture morphology
-
-
图 7 Mo−Re合金拉伸断口形貌:(a)、(b)Mo−14Re合金,室温;(c)Mo−14Re合金,1100 ℃;(d)Mo−14Re合金,1300 ℃;(e)Mo−14Re合金,1500 ℃;(f)、(g)Mo−42Re合金,室温;(h)Mo−42Re合金,1100 ℃;(i)Mo−42Re合金,1300 ℃;(j)Mo−42Re合金,1500 ℃
Figure 7. Tensile fracture morphology of the Mo−Re alloys: (a), (b) Mo−14Re alloys at room temperature; (c) Mo−14Re alloys at 1100 ℃; (d) Mo−14Re alloys at 1300 ℃; (e) Mo−14Re alloys at 1500 ℃; (f), (g) Mo−42Re alloys at room temperature; (h) Mo−42Re alloys at 1100 ℃; (i) Mo−42Re alloys at 1300 ℃; (j) Mo−42Re alloys at 1500 ℃
表 1 Mo−Re合金棒材成分及密度
Table 1 Composition and density of the Mo−Re alloy bar
编号 质量分数 / ×10−6 密度 /
(g·cm−3)理论密度 /
(g·cm−3)相对密度 / % H N O Fe Ca K Al Si Mo−14Re 10 30 20 2.10 0.69 <0.005 0.62 0.22 10.99 11.01 99.8 Mo−42Re 10 30 20 0.39 2.10 1.500 4.20 3.10 13.00 13.05 99.6 表 2 Mo−Re合金晶面间距及晶格常数
Table 2 Interplanar spacing and lattice constant of the Mo−Re alloys
材料 (110) 晶面 (200) 晶面 (211) 晶面 (220) 晶面 晶格常数,
a / Å衍射角,
θ / (°)晶面间距 / Å 衍射角,
θ / (°)晶面间距 / Å 衍射角,
θ / (°)晶面间距 / Å 衍射角,
θ / (°)晶面间距 / Å Mo* 20.258 2.2247 29.304 1.5738 36.841 1.2847 43.798 1.1129 3.1472 Mo−14Re 20.313 2.2192 29.379 1.5701 36.912 1.2826 43.903 1.1109 3.1384 Mo−42Re 20.364 2.2135 29.471 1.5657 37.065 1.2781 44.087 1.1071 3.1304 注:Mo*标准衍射参数来自于2004版粉末衍射卡片(PDF)数据库,卡片号42-1120。 -
[1] 王东辉, 袁晓波, 李中奎, 等. 钼及钼合金研究与应用进展. 稀有金属快报, 2006, 25(12): 1 Wang D H, Yuan X B, Li Z K, et al. Progress of research and applications for Mo metal and its alloys. Rare Met Lett, 2006, 25(12): 1
[2] 谭强. 钼−铼合金的制造及应用. 中国钼业, 1998, 22(1): 27 Tan Q. Manufacture and application of molybdenum rhenium alloy. China Molybd Ind, 1998, 22(1): 27
[3] 刘仁智, 安耿, 杨秦莉, 等. 钼−铼−镧合金微观组织及力学性能研究. 粉末冶金技术, 2018, 36(6): 429 Liu R Z, An G, Yang Q L, et al. Microstructures and mechanical properties of Mo−Re−La alloy. Powder Metall Technol, 2018, 36(6): 429
[4] Fabritsiev S A, Pokrovsky A S. The effect of rhenium on the radiation damage resistivity of Mo−Re alloys. J Nucl Mater, 1998, 252(3): 216 DOI: 10.1016/S0022-3115(97)00297-3
[5] 胡彬和, 李龙, 吴晓春, 等. 钼铼合金对掉落临界安全的影响. 原子能科学技术, 2016, 50(10): 1813 DOI: 10.7538/yzk.2016.50.10.1813 Hu B H, Li L, Wu X C, et al. Effect of Mo−Re alloy on drop critical safety. At Energy Sci Technol, 2016, 50(10): 1813 DOI: 10.7538/yzk.2016.50.10.1813
[6] 黄洪涛, 王卫军, 钟武烨, 等. 钼铼合金在空间核电源中的应用性能研究进展. 原子能科学技术, 2020, 54(3): 505 Huang H T, Wang W J, Zhong W Y, et al. Research progress on application of Mo−Re alloy in space nuclear power. At Energy Sci Technol, 2020, 54(3): 505
[7] Alexander K, Fumio M, Mykola D. Rhenium effect in irradiated Mo−Re alloys and welds. Univ J Mater Sci, 2014, 2(2): 19
[8] El-Genk M S, Tournier J M. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems. J Nucl Mate, 2005, 340(1): 93 DOI: 10.1016/j.jnucmat.2004.10.118
[9] 赵虎. 钼及钼合金烧结技术研究及发展. 粉末冶金技术, 2019, 37(5): 382 Zhao H. Research and development on the sintering techniques of molybdenum and molybdenum alloys. Powder Metall Technol, 2019, 37(5): 382
[10] 邢英华. 热处理对钼铼合金性能与组织的影响. 稀有金属材料与工程. 1998, 27(增刊): 148 Xing Y H. Effect of heat treatment on properties and microstructure of molybdenum rhenium alloy. Rare Met Mater Eng, 1998, 27(Suppl): 148
[11] 张军良, 李中奎, 张小明, 等. 制备方式对MoRe合金组织性能的影响. 稀有金属材料与工程, 2007, 36(增刊3): 355 Zhang J L, Li Z K, Zhang X M, et al. Effect of preparation methods on the microstructure and mechanical properties of the Mo−Re alloy, Rare Met Mater Eng, 2007, 36(Suppl 3): 355
[12] Mao P l, Han K, Xin Y. Thermodynamic assessment of the Mo−Re binary system. J Alloys Compd, 2008, 464(1-2): 190 DOI: 10.1016/j.jallcom.2007.10.060
[13] Mannheim R L, Garin J L. Structural identification of phases in Mo−Re alloys within the range from 5 to 95% Re. J Mater Proc Technol, 2003, 143-144: 533 DOI: 10.1016/S0924-0136(03)00342-X
[14] 谭拴斌, 郭让民, 杨升红, 等. 钼铼合金的结构和性能. 稀有金属, 2003, 27(6): 788 DOI: 10.3969/j.issn.0258-7076.2003.06.028 Tan S B, Gu R M, Yang H S, et al. Structure and properties of molybdenum-rhenium alloys. Rare Met, 2003, 27(6): 788 DOI: 10.3969/j.issn.0258-7076.2003.06.028
[15] Yang Y, Zhang C, Chen S L, et al. First-principles calculation aided thermodynamic modeling of the Mo−Re system. Intermetallics, 2010, 18(4): 574 DOI: 10.1016/j.intermet.2009.10.012
[16] 林小辉. 微量硅强化钼合金板材的微观组织与力学性能[学位论文]. 西安: 西安理工大学, 2010 Lin X H. The Microstructure and Mechanical Property of Minim Silicon Strengthened Molybdenum Sheet Alloys [Dissertation]. Xi’an: Xi’an University of Technology, 2010
[17] 郑修麟. 材料力学性能. 2版. 西安: 西北工业大学出版社, 2000 Zheng X L. Mechanical Properties of Materials. 2nd Ed. Xi’an: Northwestern Polytechnical University Press, 2000
[18] 杨尚磊, 陈艳, 薛小怀, 等. 铼(Re)的性质及应用研究现状. 上海金属, 2005, 27(1): 45 Yang S L, Chen Y, Xue X H, et al. The property and application research situation of rhenium (Re). Shanghai Met, 2005, 27(1): 45