高级检索

航空用SiCp/Al复合材料热变形行为与环轧工艺研究

Hot deformation behavior and ring rolling process of SiCp/Al composites used in aircraft manufacturing

  • 摘要: 为了研究航空用高强韧碳化硅颗粒增强铝基复合材料(SiCp/Al)的热变形行为,为环轧制备航空用大尺寸环件提供工艺依据,采用粉末冶金工艺制备了17%SiCp/Al复合材料(体积分数)。通过不同温度与不同变形速率的热压缩实验,获得了复合材料在不同热变形条件下的应力应变关系,并根据这一关系建立了复合材料的热加工图。研究结果表明,SiCp/Al复合材料随着变形量的增加,在低于440 ℃或高于490 ℃以及高于0.100 s‒1的变形速率下易发生失稳变形。SiCp/Al复合材料在变形温度与变形速率不适宜时,除了发生传统金属的失稳变形等工艺缺陷外,还会出现颗粒损伤引起的表面开裂,这种开裂无法通过机加工去除,应予以避免。最后,在热加工图的指导以及环轧实验验证下,给出了适宜SiCp/Al复合材料环轧成型的工艺参数,完成了外径达1200 mm的SiCp/Al复合材料环件制备。

     

    Abstract: To study the thermal deformation behavior of high-strength and high-toughness SiC particle reinforced aluminum matrix composites (SiCp/Al) used in aircraft manufacturing and to provide the technical basis for the preparation of large size rings by ring rolling used for the aviation, the 17%SiCp/Al composites (volume fraction) were prepared by powder metallurgy process. The stress-strain relationships of the SiCp/Al composites under the different thermal deformation conditions were obtained through the thermal compression experiments at the different temperatures and deformation rates, and the thermal working diagram was established according to the relationship. In the results, with the increase of deformation, the SiCp/Al composites are prone to the instability deformation at the deformation temperature lower than 440 ℃ or higher than 490 ℃ and the deformation rates higher than 0.100 s‒1. When the deformation temperature and deformation rate of the SiCp/Al composite are not suitable, besides the traditional process defects such as the instability deformation but also the surface cracking caused by the particle damage may occur, which cannot be removed by machining and should be avoided. Finally, under the guidance of the hot working diagram and the verification of the ring rolling experiment, the process parameters suitable for the ring rolling of the SiCp/Al composite are given, and the circular workpieces prepared using the SiCp/Al composites with the outer diameter of 1200 mm are prepared.

     

/

返回文章
返回