高级检索

低成本TiH2粉末制备Ti/(TiB+TiC)复合材料的组织与性能

林东键, 柳中强, 唐浩, 张建涛, 肖志瑜

林东键, 柳中强, 唐浩, 张建涛, 肖志瑜. 低成本TiH2粉末制备Ti/(TiB+TiC)复合材料的组织与性能[J]. 粉末冶金技术, 2024, 42(2): 135-143. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010002
引用本文: 林东键, 柳中强, 唐浩, 张建涛, 肖志瑜. 低成本TiH2粉末制备Ti/(TiB+TiC)复合材料的组织与性能[J]. 粉末冶金技术, 2024, 42(2): 135-143. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010002
LIN Dongjian, LIU Zhongqiang, TANG Hao, ZHANG Jiantao, XIAO Zhiyu. Microstructure and properties of Ti/(TiB+TiC) composites prepared by low-cost TiH2 powders[J]. Powder Metallurgy Technology, 2024, 42(2): 135-143. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010002
Citation: LIN Dongjian, LIU Zhongqiang, TANG Hao, ZHANG Jiantao, XIAO Zhiyu. Microstructure and properties of Ti/(TiB+TiC) composites prepared by low-cost TiH2 powders[J]. Powder Metallurgy Technology, 2024, 42(2): 135-143. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010002

低成本TiH2粉末制备Ti/(TiB+TiC)复合材料的组织与性能

基金项目: 国家自然科学基金资助项目(52274363),广东省自然科学基金资助项目(2015A030312003)
详细信息
    通讯作者:

    肖志瑜: E-mail: zhyxiao@scut.edu.cn

  • 中图分类号: TF125;TB333

Microstructure and properties of Ti/(TiB+TiC) composites prepared by low-cost TiH2 powders

More Information
  • 摘要:

    使用低成本的TiH2粉末代替纯钛粉,通过添加B4C原位生成TiB和TiC两种增强相,经过真空无压烧结及热挤压工艺制备出具有优异力学性能的Ti/(TiB+TiC)钛基复合材料,分析了制备工艺和增强相对复合材料组织与性能的影响。结果表明,TiH2粉末具有较好的烧结活性,脱氢烧结样品的相对密度可达97.7%;经热挤压工艺,相对密度进一步提升到99.9%,接近于全致密。增强相TiB为短纤维状,TiC为颗粒状,均匀分布在等轴α-Ti基体中,能抑制等轴晶的长大,细化晶粒。热挤压工艺能进一步细化晶粒,使组织更加均匀致密,挤压态钛基复合材料具有高硬度和良好的强塑性匹配。TiH2+4%B4C(体积分数)挤压态复合材料维氏硬度Hv0.3 310,屈服强度683 MPa,抗拉强度851 MPa,断后伸长率15.1%。

    Abstract:

    Ti/(TiB+TiC) titanium matrix composites with the excellent mechanical properties were prepared by vacuum pressureless sintering and hot extrusion by using low-cost TiH2 powders instead of pure titanium powders and adding B4C to in-situ produce TiB and TiC reinforcements. The effects of preparation technology and reinforcements on the microstructure and properties of the Ti/(TiB+TiC) composites were analyzed. The results show that the TiH2 powders have the good sintering activity, and the relative density of the sample after dehydrogenation and sintering can reach 97.7%, which is further increased to 99.9% after the hot extrusion as closed to full density. The TiB reinforcements are short fibrous, and the TiC reinforcements are granular, which are uniformly distributed in the equiaxed α-Ti matrix, restraining the growth of equiaxed grains and refining the grains. The hot extrusion process can further refine the grains and make the microstructure more uniform and compact, the as-extruded titanium matrix composites show the high hardness and good matching of strength and ductility. The TiH2+4%B4C (volume fraction) extruded composites have the Vickers hardness of Hv0.3 310, yield strength of 683 MPa, tensile strength of 851 MPa, and elongation of 15.1% after fracture.

  • 钼基合金由于其具有优异的高温力学性能、良好的导热性、低的热膨胀系数等优点常被用作高温等温锻造的模具[13]。钼制品在工模具方面可用作不锈钢无缝管穿孔顶头、黑色金属压铸模具、铜合金压铸模具、电铆合模具、等温锻造模具、摆动碾压模具、电阻焊接模具等[4]。然而,钼合金在高温环境下会发生严重的氧化行为,导致其使用条件严重受限[5]。提高钼合金的抗氧化性能是扩展其在材料领域应用的关键。目前提高钼合金抗氧化性能的最主要途径是合金化和在钼合金表面沉积涂层。大量的研究表明,通过添加合金元素可以显著提高钼基合金的抗氧化性能,但这种方式往往导致其力学性能恶化[69]。而钼合金表面沉积涂层是一种有效的方法,其中最常见的涂层是硅化物涂层,这类涂层在高温下与空气接触 可以形成一种致密的氧化膜,可以延缓氧气向金属基体扩散[10,11]

    MoSi2具有较高的熔点(2030 ℃)、适中的密度(6.24 g·cm−3)和优异的抗氧化性能,在较大的氧化温度范围内形成致密的SiO2保护膜[1215],因而被大量用在钼合金的抗氧化涂层领域中。但由于从使用温度降至室温的过程中,MoSi2的热膨胀系数不匹配涂层(8.5×10−6 K−1)和Mo基体(5.8×10−6 K−1),形成沿MoSi2涂层的晶界垂直于Mo基体的裂纹,导致涂层失效[16]。同时在中温区域,涂层中的Si容易扩散到基体中,导致涂层中Si的含量降低,扩散到基体中的Si会和基体反应生成抗氧化性能较差的亚硅化物(Mo5Si3和Mo3Si)[17]。为了解决这类问题,学者们通过添加有益的合金元素(Al、B和Hf等)来改善MoSi2的粉化氧化现象(pesting)[1824]。Al的添加使MoSi2在中温(400~600 ℃)下克服了粉化氧化现象。在MoSi2涂层中添加的B元素,一小部分虽生成了B2O3气体逸出,但大部分的B元素溶解到氧化层,与涂层的其他物质如SiO2、Na2O等可以形成连续而致密的硼硅酸盐涂层,添加B的硅酸盐玻璃具有更高的自愈性进一步增加涂层的保护能力[25]

    常用的涂层制备方法包括化学气相沉积法、包埋法、磁控溅射法、等离子喷涂法和涂覆法。为实现常规加热条件下对大型钼合金锻件锻造加工,本文制备了以硼硅酸盐为基础并掺杂了Al和MoSi2的抗氧化涂料,通过高温下生成的硼硅酸盐–陶瓷玻璃层对钼合金进行抗氧化防护。

    以粉末冶金烧结制备的TZC合金为基体进行涂层实验,合金成分如表1。将TZC合金用线切割切成10 mm×10 mm×10 mm的试样,使用1200目的砂纸磨抛后,用超声波进行清洗。把处理后的试样使用不同的涂料通过刮刀法涂覆涂层,然后在200 ℃的真空下进行烘干,其中A试样的涂料主要成分为Al2O3、SiO2、B2O3、Na2O掺杂部分硼粉,以期高温下形成硼硅酸盐玻璃保护层;B试样在A涂料的基础上掺杂质量分数为15%的MoSi2粉(500目,99.99%);C试样在B涂料的基础上添加少量的Al粉(500目,99.99%)。三种涂层通过粘结剂(聚乙烯醇缩丁醛,PVB)按照一定质量分数混合均匀并涂覆。D试样为参照试样,不进行任何涂层涂覆。

    表  1  TZC合金主要化学成分(质量分数)
    Table  1.  Main chemical components of TZC alloy %
    CSiZrTiCeFeMo
    0.090.010.401.300.80≤0.01余量
    下载: 导出CSV 
    | 显示表格

    为研究涂层的抗氧化性能,在YFX12/16Q-YC型电阻炉中,在1200 ℃的空气气氛中对试样进行0.5 h、1.0 h、2.0 h、4.0 h、8.0 h等不同时间的氧化实验,用灵敏度为±0.1 mg的电子天平对试样涂层前后、氧化前后分别进行称重,将氧化前重量减去氧化后的得到氧化失重曲线。

    用Rigaku Smartlab9KW型X射线衍射仪(X-ray diffraction,XRD)分析样品的物相组成,Cu靶Kα源(λ=1.54178 Å),扫描速率10 °·min−1,图谱的收集范围2θ为20 °~80 °;采用SU-1510在扫描电镜(scanning electron microscope,SEM)下观察样品的形貌;采用牛津仪器的能量色散谱(energy disperse spectroscope,EDS)检测器进行成分分析。

    图1给出了各个试样在1200 ℃下的重量变化情况。从对比实验可见,裸露在空气中的TZC合金试样在经过2 h的氧化后失重约400 mg·cm−2,而三个试样涂层的重量变化量均较低,其中A试样的涂层失重为318.52 mg·cm−2,与D试样相比,失重降低20%;B试样的涂层失重为300.91 mg·cm−2,降低25%;而C试样的涂层失重为122.20 mg·cm−2,降低69%,保护效果最为明显。试样重量的变化随着氧化时间的增加可分为三阶段。在氧化1 h以内的阶段I,试样质量基本保持不变,A、B试样涂层失重随时间延长缓慢上升,而C试样涂层先增重后失重;在氧化1~4 h的阶段II,试样失重随氧化时间增加快速增大,其中C试样涂层的氧化失重明显低于A、B试样;在氧化4~8 h的阶段III,涂层氧化失重变化较阶段II趋缓,A、B试样涂层在阶段III内的质量变化约为50 mg·cm−2,该阶段C试样涂层的质量变化虽高于A、B,但仍处于较低水平。

    图  1  不同的试样涂层在1200 ℃下的氧化失重
    Figure  1.  The oxidation weight loss of different coating samples at 1200

    在粉末烧结的TZC合金板上制备了厚约200 μm的硼硅酸盐–陶瓷玻璃涂层(A试样),如图2所示。利用扫描电镜可以清楚的观察到涂层的表面和截面形貌,涂层表面光滑致密,无孔洞和裂纹分布,见图2(a)。从涂层截面形貌可以看出,涂层组织均匀,涂层内部同样不存在裂纹和孔洞,且涂层和基体结合良好,如图2(b)。

    图  2  试样A涂层的表面和截面形貌:(a)表面形貌,(b)截面形貌
    Figure  2.  Surface and cross section morphology of the coating in sample A: (a) surface morphology, (b) cross section morphology

    图3为涂层及试样氧化后表面物相X射线衍射图谱,其中曲线A0为未进行氧化的涂层。由图3可以看出,A涂层的主要组成物相有SiO2、Al2O3、TiO2、ZrO2为主,并含有少量的氧化钠、氧化钙和氧化硼。这些物质在高温下可形成硼硅酸盐玻璃,阻碍基体与氧气接触,从而起到抗氧化的效果。

    图  3  涂层氧化后试样的X射线衍射图谱
    Figure  3.  XRD patterns of coated oxidized sample

    A涂层在1200 ℃氧化时间不同(曲线A1、A3、A4对应氧化时间分别为0.5 h、2.0 h、4.0 h),主要氧化产物均是MoO3、TiO2以及少量SiO2、MoO2和CaZrTi2O7。说明A涂层在氧化0.5 h时,氧气就开始和基体反应,而后物相组成基本不变,达到氧化与挥发过程的动态平衡。

    B涂层额外添加了质量分数15%的MoSi2,氧化2.0 h后(曲线B3),主要的物相依然是MoO3,另外还含有SiO2、Al2O3、TiO2、CaZrTi2O7等。额外添加的MoSi2在氧化过程中已完全被消耗而生成了SiO2和具有挥发性的MoO3

    添加了铝粉的C涂层在氧化了2.0 h后(曲线C3),其主要物相已发生了改变,主要为SiO2、MoO3、Al2O3等混合物,另外还有Mo5Si3、TiO2、MoO2、CaZrTi2O7等。检测到的Mo5Si3说明添加MoSi2并没有完全被氧化,Al的添加能够减缓Si元素的损失,从而提高涂层的抗氧化寿命。

    图4为D试样在1200 ℃下氧化2 h表面形貌。从图4可以看到,试样表面氧化严重,为典型的片状MoO3[19]

    图  4  D试样在1200 ℃下氧化2 h表面形貌
    Figure  4.  The surface morphology of the sample D oxidized at 1200 ℃ for 2 h

    图5为A试样涂层经过不同时间氧化后的表面形貌。由图5可见,A试样经过0.5 h氧化后表面出现少量的片状MoO3,见图5(a)中箭头所示;当氧化1 h后,片状MoO3明显变多,说明基体的氧化已穿透涂层,见图5(b);随着氧化时间的增长,试样进入快速氧化阶段,表面出现孔洞,见图5(c);氧化4 h后试样质量损失已较为严重,见图5(d),表面隆起的山丘状凸起说明氧化已经深入到基体深处;氧化8 h后的试样表面形貌见图5(e),这时氧化失重基本达到稳定的状态,表面氧化膜较为平整,可见大量的直径约为1 μm的细小孔洞。对图5(b)、图5(c)的点①和②进行成分能谱分析,见图5(f)、图5(g),可见随氧化时间增长,试样表面Ti含量逐渐升高,说明基体的Ti已参与表面氧化反应。这于X射线衍射能谱中发现试样表面的TiO2出现增多的现象一致,对图5(d)选定区域进行面扫描分析,见图5(h)~(j),可以看到Si在试样表面部分区域中聚集,说明该涂层并未形成有效的保护层,涂层的抗氧化性差,在0.5 h就已失去保护效果。

    图  5  A试样涂层1200 ℃下表面氧化形貌:(a)0.5 h;(b)1 h;(c)2 h;(d)4 h;(e)8 h;成分分析:(f)图(b)中①点处;(g)图(c)中②点处;图(d)中方框区域的面扫图:(h)Mo;(i)O;(j)Si
    Figure  5.  Surface oxidation morphology of coating of sample A at 1200 ℃: (a) 0.5 h; (b) 1 h; (c) 2 h; (d) 4 h; (e) 8 h; component analysis: (f) point ① in Fig.(b); (g) point ② in Fig.(c); surface scan results of the box area in Fig.(d): (h) Mo; (i) O; (j) Si

    B试样涂层添加了质量分数15%的MoSi2,所以试样表面形成的SiO2较A试样涂层明显增多,见图6(a)、(c),其表面细小的片状MoO3也是由MoSi2氧化生成;但在氧化1 h的试样表面出现大量发育良好的MoO3,见图6(b),说明虽然额外添加的MoSi2对涂层的抗氧化性能有所提升,但在试样表面仍未形成有效的保护层。

    图  6  B试样涂层1200 ℃下表面氧化形貌:(a)0.5 h;(b)1 h;(c)图(a)中①点处的成分分析
    Figure  6.  Surface oxidation morphology of coating of sample B at 1200 ℃: (a) 0.5 h; (b) 1 h; (c) component analysis of point ① in Fig.(a)

    图7为C试样涂层表面氧化形貌。试样在氧化0.5 h后表面依然接近涂层原始形貌,见图7(a);经过1 h的氧化,试样表面出现细密的片状结构,对其成分分析,这种片层结构主要成分为MoO3以及TiO2,见图7(c);在快速氧化阶段,这种片层结构不再明显,试样表面变得较为致密,见图7(d)~(e);但是氧化8 h的试样表面孔洞密布,涂层丧失了保护效果。

    图  7  C试样涂层1200 ℃下表面氧化形貌:(a)0.5 h;(b)1 h;(c)图(b)中①点处的成分分析;(d)2 h;(e)4 h;(f)8 h
    Figure  7.  The surface oxidation morphology of coating of sample C at 1200 ℃: (a) 0.5 h; (b) 1 h; (c) component analysis of point ① in Fig.(b); (d) 2 h; (e) 4 h; (f) 8 h

    图8为试样涂层氧化后截面形貌及能谱分析结果。从图8(a)中可见,A涂层氧化后为明显的层片状结构,从图8(d)成分分析可知,这种层片状物质主要为O、Mo、Ti,并且Mo、Ti呈交替分布,为MoO3和TiO2层片状组织。图8(b)和(e)分别对应B涂层的截面和能谱分析,可见其截面组织和A涂层的基本相同,结合图6(b),说明MoSi2的添加在氧化过程中生成的SiO2向表面富集,并不能改变这种层片状氧化膜结构,所以B涂层较A涂层的抗氧化效果并没有实质性的提高。

    图  8  试样氧化2 h后截面形貌及元素线扫描:(a)A3截面;(b)B3截面;(c)C3截面;(d)图(a)线Ⅰ处元素分布;(e)图(b)线Ⅱ处元素分布;(f)图(c)线Ⅲ处元素分布
    Figure  8.  Cross-section morphology and element line scanning of the samples after 2 h oxidation: (a) A3 cross-section; (b) B3 cross-section; (c) C3 cross-section; (d) element distribution at line Ⅰ in Fig.(a); (e) element distribution at line Ⅱ in Fig.(b); (f) element distribution at line Ⅲ in Fig.(c)

    图8(c)是C涂层的截面形貌。可见,C涂层试样在氧化2 h后,其氧化层呈外层致密、内层较为疏松的两层结构。在外层可见较明显的片层状组织,该组织与A、B涂层中片层状组织相比更加致密。图8(f)的能谱分析表明,在靠近表面的区域是以氧化铝为主包含Ti、Si等氧化物,沿着涂层截面向内各元素含量根据截面层片结构出现而波动,当靠近中间区域时Ti元素浓度最高,并伴随稀土Ce元素的聚集,而在靠近基体的区域中Si和Ti元素明显相对较高,说明该区域仍具备一定的抗氧化能力。结合图3分析,其主要物相可能为Al2O3,、TiO2、CeO2和SiO2。通过对比三种涂层的截面形貌和截面能谱分析发现,加入Al之后在相同氧化时间内,其氧化层的相对密度得到显著提升,Al的添加较大程度提高涂层的抗氧化性能。

    图9进一步给出图8(c)的成分面分布图。可见Mo、Zr元素在氧化膜中分布基本均匀;Si元素在表面富集,内层Si来源是基体中的Si氧化所致;Al元素集中存在于外层而Ti元素则主要存在于氧化膜中间。从图中可见,稀土Ce存在于Ti元素的富集处,说明该处形成了铈钛的氧化物。因此从合金元素的分布看,可以说,C试样涂层在氧化2 h后表面氧化膜形成了外层为铝硅酸盐、中层铈钛氧化物、内层TiO2和钼硅化合物的三层结构,这种结构是C试样涂层具有优良抗氧化能力的根源。

    图  9  C试样涂层氧化2 h截面形貌及元素分布(Fig.8(c))
    Figure  9.  Cross section morphology and element distribution of coating of sample C oxidation 2 h (Fig.8 (c))

    常温涂层由多孔、不致密且均匀分散的固体颗粒构成,因此在氧化实验中,空气中的氧气通过涂层中的孔洞向基体扩散。随着温度的升高,孔洞中的氧气开始与涂层中的物质和基体反应。MoO3晶体生长速度最快的方向是(001)晶面,即沿着该方向形成的晶体比较薄而平。这种特殊的晶体生长方式可能导致氧化层形成片状结构。当温度达到硼硅酸盐玻璃的软化点时,涂层开始软化、烧结,涂层由多孔不致密的固体颗粒转化为液态,且气孔逐渐减小,涂层密度不断增大,直至涂层熔化成玻璃状。添加的硼粉融入硼硅酸盐玻璃中起到降低SiO2粘度和涂层孔隙率的作用,同时还能增强涂层的自愈性,进而提高涂层的抗氧化性能[2628],添加的CaO、Na2O、TiO2、ZrO2可以作为钙钛锆石(CaZrTi2O7)的晶核剂促进其生长从而提高涂层的稳定性。当基体被硼硅酸玻璃包裹住,形成一层致密的保护层,从而降低氧气向基体扩散的速率,防止基体被氧化。但从图8中可以看出,A试样涂层氧化后形成的片状结构是疏松的,疏松的片状结构为氧气的扩散提供通道,造成基体快速氧化。图5(d)中的试样表面形貌中存在明显的SiO2,由于试样外层硼硅酸玻璃中SiO2可能在高温下不断蒸发,进而导致涂层被破坏,B试样涂层中额外添加了质量分数15%的MoSi2以补充试样表面因蒸发而损失的SiO2,使涂层的有效抗氧化时间增长。B试样涂层中添加的MoSi2在高温下会与空气中的氧气发生复杂的化学反应:

    $$\begin{split} & \frac{2}{7}{\text{MoS}}{{\text{i}}_2}({\text{s}}) + {{\text{O}}_2}({\text{g}}) = \frac{2}{7}{\text{Mo}}{{\text{O}}_3}({\text{g}}) + \frac{4}{7}{\text{Si}}{{\text{O}}_2}({\text{s}})\\ &\Delta {G^{\text{θ }}} = - 547.918 + 0.1146T \end{split}$$ (1)
    $$\begin{split} & \frac{2}{21}{\text{M}}{{\text{o}}_{\text{5}}}{\text{S}}{{\text{i}}_3}({\text{s}}) + {{\text{O}}_2}({\text{g}}) = \frac{10}{21}{\text{Mo}}{{\text{O}}_3}({\text{g}}) + \frac{2}{7}{\text{Si}}{{\text{O}}_2}({\text{s}}) \\ & \Delta {G^{\text{θ }}} = - 374.356 + 0.0795T \end{split}$$ (2)
    $$\begin{split} & \frac{5}{7}{\text{MoS}}{{\text{i}}_2}({\text{s}}) + {{\text{O}}_2}({\text{g}}) = \frac{1}{7}{\text{M}}{{\text{o}}_{\text{5}}}{\text{S}}{{\text{i}}_3}({\text{g}}) + {\text{Si}}{{\text{O}}_2}({\text{s}}) \\ & \Delta {G^{\text{θ }}} = - 808.260 + 0.1672T \end{split}$$ (3)

    在氧气充足的情况下会发生反应(1)和(2),MoSi2会被氧化成稳定的SiO2和易挥发的MoO3。在氧气相对不足的时,反应以(3)为主。虽然MoSi2在氧化时也会生成MoSi3和Mo3Si等物质,但从热力学方面来看,其氧化的产物为Mo5Si3和SiO2。在氧气充足的界面处,会直接生成挥发性的MoO3[10]

    图6(a)中可以看出在涂层中加入15%的MoSi2后,其表面生成的SiO2明显增多。在硼硅酸玻璃的转化过程中,随着温度的升高,B、Si等元素则会向基体扩散并与基体反应,Si向基体扩散则会生成Mo5Si3相,而该相的存在降低涂层的抗氧化性[6]。B元素向基体扩散则与基体反应生成Mo–B化合物,该化合物层的存在会阻碍Si元素向基体扩散。结合其氧化失重曲线表明MoSi2在加入后涂层的抗氧化性能确实有所提高,但由于形成的氧化层结构没有发生变化,B试样涂层的抗氧化性能并没有实质性提高。

    Al在1200 ℃的高温下对氧的亲和力高于涂层中Si、B、Mo等元素[21],所以会优先生成一层致密的氧化铝。C试样涂层中添加铝粉也是为了防止氧气沿着涂层中的孔洞进入基体内部,涂层中的铝粉能够和氧气反应生成氧化铝陶瓷从而阻断氧气传输路径,与MoSi2效果相叠加,达到涂层的自修复以及填补涂层内部孔洞的效果,其氧化过程示意图见图10。在0.5 h氧化的初始阶段图10(b),涂层中的Si、Al等元素形成硼硅酸盐陶瓷玻璃层保护基体不被氧化,且出现氧化增重现象,起到良好的抗氧化效果。当氧化时间为1 h,试样表面出现了细密的片状组织,见图10(c),其出现的片状MoO3主要为MoSi2的氧化。

    图  10  C试样涂层1200 ℃表面氧化微观结构演变:(a)未氧化;(b)0.5 h;(c)1 h;(d)2 h;(e)4 h;(f)8 h
    Figure  10.  Microstructure evolution of surface coating of sample C at 1200 ℃: (a) unoxidized; (b) 0.5 h; (c) 1 h; (d) 2 h; (e) 4 h; (f) 8 h

    时间超过1 h后,涂层的抗氧化效果开始降低,此时氧化进行到图1中的阶段Ⅱ,基体开始快速氧化,见图10(d),在涂层中添加的B元素及基体中的Mo元素氧化挥发的同时,在合金制备时添加的抗氧化合金元素(Ce、Si、Ti等)则向表面扩散,但由于扩散速率的差异从而形成了图8(f)中的三层抗氧化结构,见图10(e)。而随着氧化的进一步进行,基体挥发情况加剧后,不具备挥发性质的Ce、Si、Ti等元素在氧化层的外层与涂层中的抗氧化成分结合,共同阻碍氧气与基体接触,此时氧化则进行到图1中Ⅲ阶段,氧化速度相较Ⅱ阶段有所降低。在氧化的后期阶段,钼合金制备阶段添加的ZrC、TiC以及生成的Mo2C可与氧发生氧化反应:

    $$\begin{split} & \mathrm{Mo}_{ \mathrm{2}} \mathrm{C(s)+2.5O}_{ \mathrm{2}} \mathrm{(g)\to 2MoO}_{ \mathrm{3}} \mathrm{(s)+CO}_{ \mathrm{2}} \mathrm{(g)} \\ &\Delta \mathit{G} \mathrm{\text{°}(1473\;K)=-825.1\;kJ\cdot mol}^{ \mathrm{-1}} \end{split}$$ (4)
    $$\begin{split} & \mathrm{TiC(s)+2O}_{ \mathrm{2}} \mathrm{(g)\to TiO}_{ \mathrm{2}} \mathrm{(s)+CO}_{ \mathrm{2}} \mathrm{(g)} \\ & \Delta\mathit{G} \mathrm{\text{°}(1473\;K)=-1032.6\;kJ\cdot mol}^{ \mathrm{-1}} \end{split}$$ (5)
    $$\begin{split} & \mathrm{ZrC(s)+2O}_{ \mathrm{2}} \mathrm{(g)\to ZrO}_{ \mathrm{2}} \mathrm{(s)+CO}_{ \mathrm{2}} \mathrm{(g)}\\ & \Delta \mathit{G} \mathrm{\text{°}(1473\;K)=-1017.3\;kJ\cdot mol}^{ \mathrm{-1}} \end{split}$$ (6)

    生成的CO2等气体从氧化层/基体界面向外溢出,从而形成图10(f)的孔洞形貌。

    采用涂覆法在TZC合金表面制备了硼硅酸盐玻璃A涂层、MoSi2粉掺杂B涂层以及Al粉改良C涂层三种抗氧化涂层,研究了其在1200 ℃的氧化行为。

    (1)在1200 ℃下的氧化实验中,没有添加涂层的钼合金在氧化2 h的失重为400 mg·cm−2,而添加三种不同抗氧化涂层的钼合金失重情况均有不同程度的改善,其中C涂层氧化2 h的失重仅为122.20 mg·cm−2,抗氧化性能提高69%;

    (2)A涂层在1200 ℃下氧化的主要物相为MoO3、TiO2、少量的SiO2、MoO2和CaZrTi2O7;B涂层的主要物相相较A涂层多了Al2O3;C涂层中的主要物相为SiO2、MoO3、Al2O3等混合物,此外还有Mo5Si3,Al粉的添加改变了氧化膜的物相组成。

    (3)A、B涂层在氧化0.5 h后试样表面均检测到MoO3,并观察到明显的较粗大的片状MoO3组织,随着氧化时间的增加,试样表面出现孔洞和裂纹;C涂层在1 h内具有良好的保护能力,在氧化时间继续增加后,涂层开始逐渐失效。

    (3)涂层A、B在氧化后截面的组织主要以MoO3和TiO2交替分布为主,而涂层C在氧化2 h后,截面形成外层铝硅酸盐、中层铈钛氧化物、内层TiO2和钼硅化合物的三层结构,使其具有优良的抗氧化效果。

  • 图  1   原料粉末显微形貌:(a)TiH2;(b)B4C;(c)TMC1

    Figure  1.   SEM images of the raw powders: (a) TiH2; (b) B4C; (c) TMC1

    图  2   TiH2粉末粒度分布

    Figure  2.   Particle size distribution of the TiH2 powders

    图  3   不同B4C含量烧结态和挤压态样品相对密度

    Figure  3.   Relative density of the as-sintered and as-extruded samples with different B4C contents

    图  4   不同B4C含量烧结态和挤压态样品金相组织形貌:(a)AS-TMC0;(b)AE-TMC0;(c)AS-TMC1;(d)AE-TMC1;(e)AS-TMC2;(f)AE-TMC2;(g)AS-TMC4;(h)AE-TMC4

    Figure  4.   Microstructures of the as-sintered and as-extruded samples with the different B4C contents: (a) AS-TMC0; (b) AE-TMC0; (c) AS-TMC1; (d) AE-TMC1; (e) AS-TMC2; (f) AE-TMC2; (g) AS-TMC4; (h) AE-TMC4

    图  5   粉末原料、烧结态(a)和挤压态(b)样品X射线衍射图谱

    Figure  5.   XRD patterns of the raw powders and the as-sintered (a) and as-extruded (b) samples

    图  6   不同B4C含量烧结态和挤压态样品维氏硬度

    Figure  6.   Vickers hardness of the as-sintered and as-extruded samples with different B4C contents

    图  7   不同B4C含量烧结态和挤压态样品力学性能:(a)拉伸应力−应变曲线;(b)拉伸性能

    Figure  7.   Mechanical properties of the as-sintered and as-extruded samples with the different B4C contents: (a) tensile stress-strain curves; (b) tensile properties

    图  8   挤压态Ti/(TiB+TiC)复合材料拉伸断口形貌:(a)、(b)AE-TMC0;(c)、(d)AE-TMC1;(e)、(f)AE-TMC2;(g)、(h)AE-TMC4

    Figure  8.   Tensile fracture images of the as-extruded Ti/(TiB+TiC) samples with different B4C contents: (a), (b) AE-TMC0; (c), (d) AE-TMC1; (e), (f) AE-TMC2; (g), (h) AE-TMC4

    图  9   利用粉末冶金工艺制备的钛基复合材料拉伸性能[15,23,2529]

    Figure  9.   Tensile properties of the titanium matrix composites prepared by powder metallurgy[15,23,2529]

    表  1   钛基复合材料B4C添加量和原位生成TiB和TiC增强相的理论含量

    Table  1   Addition dosage of B4C in the titanium matrix composites and the theoretical content of in-situ TiB and TiC reinforcements

    编号样品B4C体积分数 / %TiB / %TiC / %TiB+TiC体积分数 / %
    体积分数质量分数体积分数质量分数
    TMC0TiH20
    TMC1TiH2+1%B4C12.392.390.560.612.95
    TMC2TiH2+2%B4C24.804.801.121.225.92
    TMC4TiH2+4%B4C49.719.682.262.4711.97
    下载: 导出CSV

    表  2   增强相TiB、TiC和不同B4C含量挤压态复合材料的杨氏模量

    Table  2   Young’s modulus of TiB, TiC, and the as-extruded samples with the different B4C contents

    样品TiBTiCTMC0TMC1TMC2TMC4
    杨氏模量 / GPa443.00[22]460.00[23]103.88106.47127.28132.57
    下载: 导出CSV
  • [1] Leyens C, Peters M. 钛与钛合金. 陈振华 译. 北京: 化学工业出版社, 2006

    Leyens C, Peters M. Titanium and Titanium Alloys. Transl by Chen Z H. Beijing: Chemical Industry Press, 2006

    [2]

    Park N K, Lee C H, Kim J H, et al. Characteristics of powder-rolled and sintered sheets made from HDH Ti powders. Key Eng Mater, 2012, 520: 281

    [3]

    Yamamoto Y, Kiggans J O, Clark M B, et al. Consolidation process in near net shape manufacturing of armstrong CP−Ti/Ti−6Al−4V powders. Key Eng Mater, 2010, 436: 103

    [4]

    Ivasishin O M, Eylon D, Bondarchuk V I, et al. Diffusion during powder metallurgy synthesis of titanium alloys. Defect Diffus Forum, 2008, 277: 177

    [5]

    Li L, Zhou A, Xu L, et al. Synthesis of high pure Ti3AlC2 and Ti2AlC powders from TiH2 powders as Ti source by tube furnace. J Wuhan Univ Technol Mater Sci, 2013, 28: 882

    [6]

    Yang Y F, Mu D K. Simultaneous fast dehydrogenation of TiH2 and rapid synthesis of TiB2−TiC through self-propagating high-temperature synthesis of TiH2−B4C system. Metall Mater Trans A, 2014, 45: 3184

    [7]

    Naka M, Feng J C, Schuster J C. Phase reaction and diffusion path of the SiC/Ti system. Metall Mater Trans A, 1997, 28: 1385

    [8]

    Feng H B, Zhou Y, Jia D C, et al. Microstructural characterization of spark plasma sintered in situ TiB reinforced Ti matrix composite by EBSD and TEM. Mater Trans, 2005, 46(3): 575

    [9]

    Puch V, Kováik J, Kovalíková A, et al. Mechanical and tribological properties of TiB2−Ti composites prepared by spark plasma sintering. Kovove Mater, 2019, 57(6): 435

    [10]

    Zhang Y Z, Wei Z M, Shi L K, et al. Characterization of laser powder deposited Ti–TiC composites and functional gradient materials. J Mater Process Technol, 2008, 206(1-3): 438

    [11]

    Maja M E, Falodun O E, Obadele B A, et al. Nanoindentation studies on TiN nanoceramic reinforced Ti–6Al–4V matrix composite. Ceram Int, 2018, 44(4): 4419

    [12]

    Ghasali E, Asl M S. Microstructural development during spark plasma sintering of ZrB2–SiC–Ti composite. Ceram Int, 2018, 44(15): 18078

    [13]

    Shi S F, Cho S H, Goto T, et al. The effects of sintering temperature on mechanical and electrical properties of Al2O3/Ti composites. Mater Today Commun, 2020, 25: 101522

    [14]

    Liu M, Liu S C, Chen W, et al. Effect of trace lanthanum hexaboride on the phase, grain structure, and texture of electron beam melted Ti−6Al−4V. Add Manuf, 2019, 30: 100873

    [15]

    Fruhauf J B, Roger J, Dezellus O, et al. Microstructural and mechanical comparison of Ti+15%TiCp composites prepared by free sintering, HIP and extrusion. Mater Sci Eng A, 2012, 554: 22

    [16]

    Huang L Q, Qian M, Liu Z M, et al. In situ preparation of TiB nanowires for high-performance Ti metal matrix nanocomposites. J Alloys Compd, 2018, 735: 2640

    [17] 张茂胜. TiC+TiB增强高温钛合金基复合材料的组织和性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2011

    Zhang M S. Research on the Microstructure and Properties of High Temperature Titanium Alloy Matrix Composites Enhanced by TiC and TiB [Dissertation]. Harbin: Harbin Institute of Technology, 2011

    [18]

    Xue B, Ma H H, Shen Z W, et al. Study on ball milling of TiH2 and application in energetic materials. Appl Mech Mater, 2014, 599-601: 107

    [19]

    Gao C, Wang Z, Xiao Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties. J Mater Process Technol, 2020, 281: 116618

    [20] 何文艺, 肖志瑜, 柳中强. 基于TiH2原料的粉末冶金Ti−6Al−3Nb−2Zr−1Mo合金的组织与性能研究. 精密成形工程, 2021, 13(2): 27

    He W Y, Xiao Z Y, Liu Z Q. Microstructure and properties of powder metallurgy Ti−6Al−3Nb−2Zr−1Mo alloy using TiH2 as raw material. J Netshape Form Eng, 2021, 13(2): 27

    [21]

    Sun S Y, Wang M M, Wang L Q, et al. The influences of trace TiB and TiC on microstructure refinement and mechanical properties of in situ synthesized Ti matrix composite. Composites Part B, 2012, 43(8): 3334

    [22] 姚强, 邢辉, 孟丽君, 等. TiB2和TiB弹性性质的理论计算. 中国有色金属学报, 2007(8): 1297 DOI: 10.3321/j.issn:1004-0609.2007.08.012

    Yao Q, Xing H, Meng L J, et al. Theoretical calculation of elastic properties of TiB2 and TiB. Chin J Nonferrous Met, 2007(8): 1297 DOI: 10.3321/j.issn:1004-0609.2007.08.012

    [23]

    Gaisin R A, Imayev V M, Imayev R M, et al. Microstructure and mechanical properties of Ti–TiB based short-fiber composite materials manufactured by casting and subjected to deformation processing. Russ Phys J, 2015, 58: 848 DOI: 10.1007/s11182-015-0580-z

    [24] 钟群鹏, 赵子华. 断口学. 北京: 高等教育出版社, 2006

    Zhong Q P, Zhao Z H. Fractography. Beijing: Higher Education Press, 2006

    [25]

    Li S F, Sun B, Imai H, et al. Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Composites Part A, 2013, 48: 57 DOI: 10.1016/j.compositesa.2012.12.005

    [26]

    Xu S H, Lu T T, Qiu J W, et al. Microstructure and mechanical properties of Ti−Ta based composites enhanced by in-situ formation of TiC particles. Mater Charact, 2021, 178: 111241 DOI: 10.1016/j.matchar.2021.111241

    [27]

    Tsang H T, Chao C G, Ma C Y. Effects of volume fraction of reinforcement on tensile and creep properties of in-situ TiB/Ti MMC. Scr Mater, 1997, 37(9): 1359 DOI: 10.1016/S1359-6462(97)00251-0

    [28]

    Chandran K, Panda K B. Titanium composites with TiB whiskers. Adv Mater Processes, 2002, 160(10): 59

    [29]

    Li S F, Kondoh K, Imai H, et al. Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC–TiB. Mater Sci Eng A, 2015, 628: 75 DOI: 10.1016/j.msea.2015.01.033

图(9)  /  表(2)
计量
  • 文章访问数:  769
  • HTML全文浏览量:  103
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-14
  • 网络出版日期:  2022-03-10
  • 刊出日期:  2024-04-27

目录

/

返回文章
返回