Microstructure and properties of Fe2(MoO4)3 prepared by sintering recovery products from waste MoSi2
-
摘要:
采用热蒸发法回收废旧MoSi2氧化煅烧产物MoO3,以回收MoO3粉末与Fe2O3为原料,经反应烧结制备Fe2(MoO4)3。讨论了MoSi2完全氧化所需的时间和温度,并研究了Fe2(MoO4)3材料的组织形貌、线收缩率、体积密度和光谱学性能。结果表明:废旧MoSi2材料粉末经500 ℃煅烧120 min以上时间即可完全氧化。在MoO3与Fe2O3反应烧结过程中,烧结温度越高,MoO3与Fe2O3反应越完全,所制备的Fe2(MoO4)3材料空隙随之增多,线收缩率升高,体积密度降低。与纯Fe2(MoO4)3材料相比,Fe2(MoO4)3和MoO3复合相的光生电子–空穴对更不易复合,理论光催化活性更高。以亚甲基蓝为染料,纯Fe2(MoO4)3对其具有良好的吸附性能,而Fe2(MoO4)3和MoO3复合相则表现出优异的光催化性能,且Fe2(MoO4)3和MoO3复合相的光催化降解循环稳定性最好。
Abstract:MoO3 was recovered from waste MoSi2 after oxidation roasting by thermal evaporation method, and Fe2(MoO4)3 was prepared by reaction sintering method using the recovered MoO3 and Fe2O3 as raw materials. The time and temperature for the complete oxidation of MoSi2 were discussed, and the microstructure, linear shrinkage, volume density, spectral properties of the prepared Fe2(MoO4)3 materials were studied. The results show that, the waste MoSi2 powders can be completely oxidized after calcination at 500 ℃ for more than 120 min. During the reaction sintering process of MoO3 and Fe2O3, the higher the sintering temperature, the more complete the reaction between MoO3 and Fe2O3; the void of the prepared Fe2(MoO4)3 materials increases, the line shrinkage rate increases, and the volume density decreases. Fluorescence spectrum analysis shows that, the photogenerated electron-hole pairs of the Fe2(MoO4)3 and MoO3 composite materials are more difficult to be recombined than those of the pure Fe2(MoO4)3, showing the higher photocatalytic activity for the composites. Using methylene blue as dye, the pure Fe2(MoO4)3 has the good adsorption performance, while the Fe2(MoO4)3 and MoO3 composites show the excellent photocatalytic performance, and the mixture of Fe2(MoO4)3 and MoO3 composites has the best photocatalytic degradation cycle stability.
-
-
图 12 700 ℃烧结产物的光催化降解测试:(a)暗处理30 min吸附降解率及光照60 min光催化率;(b)催化剂添加量对染料光催化性能的影响;(c)催化稳定性测试
Figure 12. Photocatalytic degradation tests of the products sintered at 700 ℃: (a) adsorption degradation efficiency in dark for 30 min and photocatalytic efficiency for 60 min illumination; (b) effect of catalyst amount on the photocatalytic degradation of products; (c) catalytic stability test for 4 cycles
表 1 废旧MoSi2粉末中元素种类及含量(质量分数)
Table 1 Chemical composition of the waste MoSi2 powders
% Mo Si O W Al Rh Se Fe Mg 45.78 28.05 13.00 8.17 2.16 0.53 0.36 0.17 0.12 -
[1] 张强, 蔡永丰, 李晓静, 等. 钼合金粉末冶金研究进展. 粉末冶金技术, 2023, 41(1): 44 Zhang Q, Cai Y F, Li X J, et al. Research progress of molybdenum alloys prepared by powder metallurgy. Powder Metall Technol, 2023, 41(1): 44
[2] 潘以庆, 田青超, 徐文进. 钼合金顶头制备技术研究进展. 粉末冶金技术, 2021, 39(5): 452 Pan Y Q, Tian Q C, Xu W J. Research progress on the preparation technology of molybdenum alloy piercing plug. Powder Metall Technol, 2021, 39(5): 452
[3] 冯培忠, 曲选辉, 杜学丽, 等. 二硅化钼抗氧化性的研究进展. 粉末冶金技术, 2006, 24(1): 64 DOI: 10.3321/j.issn:1001-3784.2006.01.015 Feng P Z, Qu X H, Du X L, et al. Progress in the oxidation resistance of molybdenum disilicide. Powder Metall Technol, 2006, 24(1): 64 DOI: 10.3321/j.issn:1001-3784.2006.01.015
[4] Zaki Z I, Mostafa N Y, Ahmed Y M Z. Synthesis of dense mullite/MoSi2, composite for high temperature applications. Int J Refract Met Hard Mater, 2014, 45: 23 DOI: 10.1016/j.ijrmhm.2014.03.006
[5] Lu Q, Chen X, Fan J L. Effect of Nb–Al–SiC elements combined with pre-oxidation treatment on the pesting resistance of MoSi2. Cream Int, 2019, 45(13): 15807 DOI: 10.1016/j.ceramint.2019.05.041
[6] 彭可, 易茂中, 冉丽萍. MoSi2及MoSi2基复合材料制备技术的新进展. 材料导报, 2006, 20(7): 54 DOI: 10.3321/j.issn:1005-023X.2006.07.014 Peng K, Yi M Z, Ran L P. Progress in the fabrication of MoSi2 and MoSi2 matrix composites. Mater Rev, 2006, 20(7): 54 DOI: 10.3321/j.issn:1005-023X.2006.07.014
[7] Arreguin-Zavala J, Turenne S, Martel A, et al. Microwave sintering of MoSi2-Mo5Si3 to promote a final nanometer-scale microstructure and suppressing of pesting phenomenon. Mater Charact, 2012, 68: 117 DOI: 10.1016/j.matchar.2012.03.014
[8] 张来启, 高强, 林均品. MoSi2超高温结构材料的研究进展. 中国材料进展, 2015, 34(2): 126 Zhang L Q, Gao Q, Lin J P. The state-of-art of ultra-high-temperature structural MoSi2. Mater China, 2015, 34(2): 126
[9] Feng P Z, Wang X H, He Y Q, et al. Effect of high-temperature preoxidation treatment on the low-temperature oxidation behavior of a MoSi2-based composite at 500 ℃. J Alloys Compd, 2009, 473(1-2): 185 DOI: 10.1016/j.jallcom.2008.06.032
[10] 杜永芳, 宋继梅, 王红, 等. Fe2(MoO4)3类芬顿催化剂的制备及中性条件下降解结晶紫的研究. 安徽大学学报(自然科学版), 2012, 36(6): 73 Du Y F, Song J M, Wang H, et al. Synthesis of Fe2(MoO4)3 Fenton-like catalyst and degradation of crystal violet at neutral condition. J Anhui Univ Nat Sci, 2012, 36(6): 73
[11] 黄政, 金国杰, 高焕新. Fe2(MoO4)3/MoO3纳米棒催化剂的制备及应用. 工业催化, 2017, 25(2): 5 DOI: 10.3969/j.issn.1008-1143.2017.02.007 Huang Z, Jin G J, Gao H X. Preparation and application of Fe2(MoO4)3/MoO3 nano-rod catalysts. Ind Catal, 2017, 25(2): 5 DOI: 10.3969/j.issn.1008-1143.2017.02.007
[12] 朱淼淼, 杨宏训, 林生岭. 铁钼氧化物电极材料的制备及在锂离子电池中的应用. 江苏科技大学学报(自然科学版), 2019, 33(3): 38 Zhu M M, Yang H X, Lin S L. Preparation of iron molybdenum oxide electrode material and its application in lithium ion batteries. J Jiangsu Univ Sci Technol Nat Sci, 2019, 33(3): 38
[13] 孙天昊, 郝素菊, 蒋武锋, 等. 纳米氧化铁的制备及形貌分析. 粉末冶金技术, 2021, 39(1): 76 Sun T H, Hao S J, Jiang W F, et al. Preparation and morphology analysis of nano-sized iron oxide. Powder Metall Technol, 2021, 39(1): 76
[14] Lü J S, Liu X N, Zhang X T, et al. Experimental and DFT study of peapod-like Fe2(MoO4)3 nanofibers for photodegradation of ciprofloxacin. Mater Lett, 2021, 290: 129456 DOI: 10.1016/j.matlet.2021.129456
[15] Zhu Y F, Ma S C, Yang Y, et al. Direct Z-scheme Fe2(MoO4)3/MoO3 heterojunction: Photo-Fenton reaction and mechanism comprehension. J Alloys Compd, 2021, 873: 159830 DOI: 10.1016/j.jallcom.2021.159830
[16] 银锐明, 范景莲, 刘勋, 等. Fe2(MoO4)3/Si3N4复合粉末还原过程中的微观组织结构. 材料研究学报, 2010, 24(1): 69 Yin R M, Fan J L, Liu X, et al. Formation mechanism of microstructure of Fe2(MoO4)3/SigN4 composite powder by hydrogen reduction. Chin J Mater Res, 2010, 24(1): 69
[17] Kim T H, Ramachandra B, Choi J S, et al. Selective oxidation of methanol to formaldehyde using modified iron-molybdate catalysts. Catal Lett, 2004, 98(2): 161
[18] Wang C H, Chu X F, Wu M M. Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sens Actuators B, 2006, 113(1): 320 DOI: 10.1016/j.snb.2005.03.011
[19] Shirakawa J, Nakayama M, Wakihara M, et al. Changes in electronic structure upon lithium insertion into Fe2(SO4)3 and Fe2(MoO4)3 investigated by X-ray absorption spectroscopy. J Phys Chem B, 2007, 111(6): 1424 DOI: 10.1021/jp065802g
[20] House M P, Carley A F, Ricardo Echeverriavalda A, et al. Effect of varying the cation ratio within iron molybdate catalysts for the selective oxidation of methanol. J Phys Chem C, 2008, 112(11): 4333 DOI: 10.1021/jp711251b
[21] 武洲, 王娜, 吴吉娜, 等. 钼钨合金烧结致密化行为. 粉末冶金技术, 2021, 39(3): 234 Wu Z, Wang N, Wu J N, et al. Sintering densification behavior of molybdenum tungsten alloys. Powder Metall Technol, 2021, 39(3): 234
[22] Reiff W M, Zhang J H, Torardi C C. Topochemical lithium insertion into Fe2(MoO4)3: Structure and magnetism of Li2Fe2(MoO4)3. J Solid State Chem, 1986, 62(2): 231 DOI: 10.1016/0022-4596(86)90236-7
-
期刊类型引用(3)
1. 张炜,萧伟健,袁传牛,张宁,陈荣昕. 基于三维离散元模型粉末压制中力链对阻塞行为的影响机制. 粉末冶金技术. 2024(04): 403-410+417 . 本站查看
2. 李化蓥,刘军,张超,张璐栋,王海陆,柯建忠. 基于离散元锥形零件冲击加载的相对密度. 粉末冶金技术. 2023(04): 322-329 . 本站查看
3. 张小粉,白瑀,李磊. 基于MARC的FC0205铁基粉末压制模拟技术. 粉末冶金工业. 2023(05): 81-88 . 百度学术
其他类型引用(0)