高级检索

选区激光熔化工艺对NiTi形状记忆合金相变及拉伸性能影响

李晴, 席晓莹, 张建涛, 唐浩, 柳中强, 肖志瑜

李晴, 席晓莹, 张建涛, 唐浩, 柳中强, 肖志瑜. 选区激光熔化工艺对NiTi形状记忆合金相变及拉伸性能影响[J]. 粉末冶金技术, 2022, 40(5): 431-440. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010009
引用本文: 李晴, 席晓莹, 张建涛, 唐浩, 柳中强, 肖志瑜. 选区激光熔化工艺对NiTi形状记忆合金相变及拉伸性能影响[J]. 粉末冶金技术, 2022, 40(5): 431-440. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010009
LI Qing, XI Xiao-ying, ZHANG Jian-tao, TANG Hao, LIU Zhong-qiang, XIAO Zhi-yu. Effect of selective laser melting process on phase transition and tensile properties of NiTi shape memory alloys[J]. Powder Metallurgy Technology, 2022, 40(5): 431-440. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010009
Citation: LI Qing, XI Xiao-ying, ZHANG Jian-tao, TANG Hao, LIU Zhong-qiang, XIAO Zhi-yu. Effect of selective laser melting process on phase transition and tensile properties of NiTi shape memory alloys[J]. Powder Metallurgy Technology, 2022, 40(5): 431-440. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010009

选区激光熔化工艺对NiTi形状记忆合金相变及拉伸性能影响

基金项目: 国家自然科学基金项目(52274363):广东省重点领域研发计划项目(2020B090923001);广东省自然科学基金团队项目(2015A030312003)
详细信息
    通讯作者:

    肖志瑜: E-mail: zhyxiao@scut.edu.cn

  • 中图分类号: TG139+.6;TN249

Effect of selective laser melting process on phase transition and tensile properties of NiTi shape memory alloys

More Information
  • 摘要:

    采用选区激光熔化成形工艺制备了NiTi形状记忆合金,研究了不同工艺参数组合下激光能量密度对NiTi合金相变、显微组织、拉伸性能和形状记忆性能的影响。结果表明:激光能量密度在45~85 J·mm−3时,试样相对密度均在99.5%以上。随激光能量密度增大,试样中NiTi(B2)相含量有所减少,相变温度逐渐提高。在打印试样中均存在纳米Ti2Ni相,随激光能量密度增大,析出相从均匀点状分布变为半网状分布。激光能量密度为47.62 J·mm−3的试样具有最优综合性能,样品的抗拉强度为(783±3) MPa,断后伸长率为(13.9±0.2)%,室温循环拉伸20次经热回复后回复率可达100%,可回复应变为2.75%。

    Abstract:

    TiNi shape memory alloys were prepared by selective laser melting (SLM). The effects of laser energy density on the phase transformation, microstructure, tensile properties, and shape memory properties of the NiTi alloys under the different printing combinations of process parameters were studied. The results show that, when the laser energy density is between 45 J·mm‒3 to 85 J·mm−3, the relative density of the samples is above 99.5%. With the increase of laser energy density, the content of NiTi(B2) phase in the SLM-formed NiTi alloys decreases, and the phase transition temperature increases gradually. Nano Ti2Ni precipitates exist in all the printed samples. With the increase of laser energy density, the precipitates change from the uniform point distribution to the semi-reticular distribution. The SLM-formed samples at the laser energy density of 47.62 J·mm−3 show the best comprehensive performance as the tensile strength of (783±3) MPa, the elongation after fracture of (13.9±0.2)%, the recovery rate of 100%, and the recoverable strain of 2.75% after 20 times of cyclic tensile at room temperature.

  • 铜具有极高的热导率,被广泛应用于快速热交换领域。铜合金被广泛应用于航天、核反应及冶金等需要先进主动冷却的工业领域[13]。铜合金的导热导电性能和力学性能是一对矛盾特性,高强高导铜合金的研究目标是在保持较高导热性能的同时尽可能提高力学性能[45]

    目前各国研究和开发的高强高导铜合金主要包括Cu–Fe系、Cu–Ni系、Cu–Nb系和Cu–Cr系合金。Cu–Ni–Si合金因具有高强度和高导电性能在引线框架和连接器等电气器件上被广泛应用[68],Cu–Cr–Nb合金因优异的力学性能和热导性而被广泛关注[2,910]。冷却水套需要适中的热导率来避免局部冷却水过热气化,产生“气锤”[11]。为了满足冷却水套的制备和使用要求,本课题组针对铜合金做了较多研究[3,1214]。研究表明,Cu–Ni–Nb合金具有较高熔点、适中热导率及较强力学性能,在热交换材料领域具有广泛的应用前景。张俊哲等[13]采用真空电弧熔炼法研究了Ni质量分数20%、30%、40%和Nb质量分数1%、3%、5%、10%条件下Cu–Ni–Nb合金的组织及性能,通过对比不同成分的Cu–Ni–Nb合金,得出Cu–30Ni–5Nb合金熔点较高,热导率适中,比较适宜冷却水套的制备。铜合金的制备方法[15]包括熔铸法、粉末冶金法和原位合成法等。张俊哲等[13]通过真空电弧熔炼法制备Cu–Ni–Nb合金,结果出现铜元素烧损及组织成分偏析等问题。粉末冶金法成形温度较低,可以避免铜元素的烧损,同时可以有效改善微观组织,实现成分均匀分布。

    本文按一定比例将电解铜粉、镍粉和铌粉混合,采用真空热压法制备Cu–30Ni–5Nb合金,研究热压温度对合金组织、相对密度、熔点及热导率的影响,获得制备具有较高熔点、适中热导率及较高力学性能的铜合金的最优热压温度。

    实验材料为电解铜粉(纯度99.99%)、镍粉(纯度99.9%)和铌粉(纯度99.9%),粒径均为300目。按质量分数65%Cu、30%Ni和5%Nb将粉末混合,放入XQM-2A型行星球磨机中进行球磨。球磨参数为球料质量比6:1,球磨时间20 h,转速300 r·min−1。将球磨后的Cu–30Ni–5Nb粉末放入石墨模具中,在ZM-44-12Y型真空热压炉中进行烧结,烧结压力为25 MPa,热压温度分别为800、850、875、900和950 ℃,保温时间为2 h,保温结束后随炉冷却得到Cu–30Ni–5Nb合金。

    在热压烧结Cu–30Ni–5Nb合金上切取金相试样,腐蚀剂为FeCl3(5 g)+ HCl(15 mL)+ H2O(100 mL)。采用排水法测定Cu–30Ni–5Nb合金实际密度,并计算相对密度。通过Nova Nano 450型扫描电镜(scanning electron microscope,SEM)观察Cu–30Ni–5Nb合金的微观组织。利用BrukerD8型X射线衍射仪(X-ray diffraction,XRD)确定Cu–30Ni–5Nb合金的物相组成,并通过Jade6.5软件进行数据分析,计算第二相质量分数,根据布拉格衍射条件计算合金的晶面间距,如式(1)所示。

    $$ 2d\sin \theta = n\lambda $$ (1)

    式中:d为晶面间距,θ为X射线与晶面的夹角,n为衍射级数,λ为X射线波长。

    利用STA449F3型综合热分析仪获得合金的示差扫描量热(differential scanning calorimeter,DSC)曲线,其吸热峰曲线和放热峰曲线的公切线交点即为合金的熔点。通过LFA447/2-2型激光导热仪测量合金的比热容及热扩散系数,根据式(2)计算出合金的热导率。

    $$ \lambda = \alpha \cdot \rho \cdot {C_{\text{P}}} $$ (2)

    式中:λ为合金热导率,W·m−1·K−1α为热扩散系数,mm2·s−1ρ为合金密度,g·cm−3Cp为合金比热容,J·g−1·K−1

    图1为不同热压温度制备Cu–30Ni–5Nb合金的X射线衍射图谱。由图可知,基体相为Cu0.81Ni0.19,第二相为NbNi3,没有检测到其他相存在。将各合金X射线衍射图谱归一化后,对比Cu0.81Ni0.19相衍射峰位置、晶面间距和第二相质量分数,结果如表1所示,随着热压温度的升高,Cu0.81Ni0.19相衍射峰位值变大且晶面间距减小,第二相质量分数升高,表明CuNi固溶体中的Ni原子向外扩散增多。热压温度为800 ℃时,第二相质量分数为5.2%;热压温度为950 ℃时,第二相质量分数增加到8.9 %。

    图  1  不同热压温度制备Cu–30Ni–5Nb合金的X射线衍射图谱
    Figure  1.  XRD patterns of the Cu–30Ni–5Nb alloys prepared at different hot-pressing temperatures
    表  1  不同热压温度下Cu0.81Ni0.19相衍射峰位置、晶面间距和第二相质量分数
    Table  1.  Diffraction peak position of Cu0.81Ni0.19 phase, the crystal plane spacing, and the second phase mass fraction at different hot-pressing temperatures
    热压温度 /
    Cu0.81Ni0.19相衍射峰
    位置,2θ / (°)
    晶面间距
    d / nm
    第二相质量
    分数 / %
    80043.7310.206845.2
    85043.7380.206805.7
    87543.7480.206765.9
    90043.7570.206716.3
    95043.7690.206678.9
    下载: 导出CSV 
    | 显示表格

    图2为不同热压温度制备Cu–30Ni–5Nb合金的扫描电子显微组织形貌。从图中可知,Cu–30Ni–5Nb合金整体组织较为致密,第二相形态大部分为层片状(图2(f)),是由球磨过程中球与粉末的碰撞导致[16]。第二相颗粒大部分在晶界处析出,少量在晶粒内析出,且随着温度的升高出现了偏聚现象。热压温度较低时,试样中存在较多的气孔且基本分布于晶界处,经875 ℃热压后试样中气孔基本消失(图2(c))。机械合金化形成的CuNiNb固溶体经热压后析出的Ni原子与Nb原子结合形成NbNi3相。同时,各试样存在压制压力导致的应变条痕(孪晶),有利于细小弥散的NbNi3相析出。

    图  2  不同热压温度制备Cu–30Ni–5Nb合金的扫描电子显微形貌:(a)800 ℃;(b)850 ℃;(c)875 ℃;(d)900 ℃;(e)950 ℃;(f)875 ℃(缩小图)
    Figure  2.  SEM images of the Cu–30Ni–5Nb alloys prepared at different hot-pressing temperatures: (a) 800 ℃; (b) 850 ℃; (c) 875 ℃; (d) 900 ℃; (e) 950 ℃; (f) 875 ℃ (low magnification image)

    表2为不同热压温度制备Cu–30Ni–5Nb合金的相对密度、熔点及热导率。热压温度为800 ℃时,合金组织中存在较多气孔(图2(a)),相对密度较低(93.59%);随着热压温度的升高,提供给粉末颗粒重排、塑性变形、原子扩散等晶界迁移的动力增加,促使烧结体内部气体排出,使合金致密化程度升高。当热压温度为900 ℃时,合金相对密度达到最大(99.13%),但当热压温度达到950 ℃时,其相对密度略微减小。这是由于热压温度升至950 ℃时,充足的烧结驱动力使晶界迁移冲破第二相和气孔“钉扎”作用的束缚,导致晶粒中包含少量第二相颗粒与气孔(见图2(e)),引起合金的相对密度降低。

    表  2  不同热压温度制备Cu–30Ni–5Nb合金的性能
    Table  2.  Properties of the Cu–30Ni–5Nb alloys prepared at different hot-pressing temperatures
    热压温度 / ℃相对密度 / %热导率 / (W·m−1·K−1)熔点 / ℃
    80093.5926.721190.93
    85096.5728.161183.65
    87598.6629.541180.86
    90099.1330.651178.92
    95098.4229.071182.42
    下载: 导出CSV 
    | 显示表格

    图3为不同热压温度制备Cu–30Ni–5Nb合金的熔点及热导率变化曲线。可以看出,合金的熔点和热导率的变化呈相反趋势。随着热压温度的升高,原子扩散速度增加,基体相的成分发生微小偏移,导致合金的熔点逐渐下降,在900 ℃时最低为1178.92 ℃;随着热压温度的继续升高,合金的熔点随后上升,这是由于能量的增加使得第二相质量分数(见表1)从6.3%(900 ℃)突增至8.9%(950 ℃),而第二相熔点高于基体相,故出现熔点上升现象。随着热压温度的升高,Cu–Ni固溶体中的Ni原子趋于均匀扩散,表现为与Nb原子结合成的第二相(NbNi3)逐渐增加,使得合金的热导率逐渐上升,在900 ℃时有最大值30.65 W·m−1·K−1,热压温度超过900 ℃以后,合金的热导率稍有减小,这是由于过高的热压温度导致基体的网状结构变形,削弱了基体相与第二相的联系,造成合金导热性能下降。

    图  3  不同热压温度制备Cu–30Ni–5Nb合金的熔点及热导率
    Figure  3.  Melting point and thermal conductivity of the Cu–30Ni–5Nb alloys prepared at different hot-pressing temperatures

    结合表2图3中不同热压温度下Cu–30Ni–5Nb合金的性能及变化趋势,发现在875 ℃热压后,合金的热导率和相对密度变化较小,性能趋于平稳。合金的相对密度、热导率与熔点均在900 ℃出现拐点,结合图2(e)中少量第二相颗粒包含在晶粒内,说明900 ℃热压后合金的性能发生异常。因此,在热压温度为875 ℃时Cu–30Ni–5Nb合金具有较好的综合性能。采用真空热压法制备的Cu–30Ni–5Nb合金熔点(1183.65 ℃)高于采用真空电弧熔炼法[13]制备的合金熔点(1172 ℃),但热导率变化不大。

    对热压温度为875 ℃制备的Cu–30Ni–5Nb合金进行了拉伸实验,得出其屈服强度(σ0.2)为355.74 MPa,伸长率为6.18%,较纯铜屈服强度(200 MPa)增加了77.9%。这是由于Cu、Ni元素可无限互溶,通过添加Ni元素,起到固溶强化作用。通过控制热压温度,抑制晶粒长大,达到细晶强化效果,使得铜合金在室温下具有较高的强度。图4为875 ℃热压制备Cu–30Ni–5Nb合金的拉伸断口形貌图。如图4(a)所示,合金少数区域出现“二次裂纹”,是由于拉伸过程中基体相(Cu0.81Ni0.19)与第二相(NbNi3)拉伸模量差异所致。如图4(b)所示,基体相中存在大量韧窝,且大韧窝周围分布有一些小韧窝,同时在韧窝内发现细小的第二相颗粒。如图4(c)所示,层片状的第二相主要发生晶间断裂,降低了铜合金的塑性。

    图  4  875 ℃热压烧结制备的Cu–30Ni–5Nb合金拉伸断口形貌:(a)二次裂纹;(b)韧窝;(c)晶间断裂
    Figure  4.  Tensile fracture morphology of the Cu–30Ni–5Nb alloys prepared by hot pressed sintering at 875 ℃: (a) secondary crack; (b) dimples; (c) trans-granular fracture

    (1)在800~950 ℃热压温度范围内,Cu–30Ni–5Nb合金的熔点先降低随后升高,900 ℃热压时,铜合金的熔点最低(1178.92 ℃);铜合金的热导率先增大随后减小,900 ℃热压时,铜合金的热导率最大(30.65 W·m−1·K−1)。

    (2)热压温度为875 ℃时,Cu–30Ni–5Nb合金具有较好的综合性能,相对密度为98.66%,熔点为1180.86 ℃,热导率为29.54 W·m−1·K−1,且合金屈服强度达到355.74 MPa,符合冷却水套的性能要求。

  • 图  1   NiTi合金粉末形貌及粒径分布:(a)粉末形貌;(b)粒径分布

    Figure  1.   Morphology and particle size distribution of the NiTi powders: (a) powder morphology; (b) particle size distribution

    图  2   SLMed-NiTi合金块体和拉伸试样尺寸:(a)、(c)不同打印参数下的块体试样;(b)拉伸试样尺寸

    Figure  2.   Dimensions of the SLMed-NiTi bulk samples and tensile samples: (a) and (c) bulk samples with the different building parameters; (b) tensile samples

    图  3   NiTi合金粉末及SLMed-NiTi试样示差扫描量热曲线(a)及相变温度随能量密度变化曲线(b)

    Figure  3.   DSC curves (a) and the phase transformation temperatures as the function of energy density (b) of the NiTi alloy powders and the SLMed-NiTi samples

    图  4   NiTi合金粉末及SLMed-NiTi试样X射线衍射谱图(a)和SLMed-NiTi试样物相质量分数随能量密度变化曲线(b)

    Figure  4.   XRD patterns of the NiTi alloy powders and the SLMed-NiTi samples (a) and the phase content as the function of energy density of the SLMed-NiTi samples (b)

    图  5   SLMed-NiTi抛光光学显微镜图像及显微组织:(a)1#试样;(b)2#试样;(c)3#试样;(d)4#试样

    Figure  5.   Optical images and microstructure of the SLMed-NiTi samples: (a) 1#; (b) 2#; (c) 3#; (d) 4#

    图  6   不同能量密度下制备的SLMed-NiTi试样扫描电子显微形貌:(a)、(c)4#试样;(b)、(d)1#试样

    Figure  6.   SEM morphology of the SLMed-NiTi samples: (a), (c) 4#; (b), (d) 1#

    图  7   1#试样透射电镜和高分辨率透射电镜形貌:(a)晶粒形貌;(b)位错网络;(c)Ti2Ni析出相分布;(d)Ti2Ni/NiTi(B2)界面的高分辨率透射电镜形貌及相应的快速傅立叶变换(fast fourier transform,FFT)图像

    Figure  7.   TEM images and HRTEM images of the 1# samples: (a) grain morphology; (b) dislocation network; (c) Ti2Ni precipitation phase distribution; (d) HRTEM image of Ti2Ni/NiTi (B2) interface and the corresponding FFT image

    图  8   不同能量密度下制备的SLMed-NiTi合金拉伸应力–应变曲线(a)和合金拉伸性能比较(b)

    Figure  8.   Tensile stress‒strain curves of the SLMed-NiTi alloys prepared by the different energy densities(a) and the tensile property comparison of the NiTi alloys (b)

    图  9   SLMed-NiTi合金各试样循环拉伸曲线:(a)、(b)1#;(c)、(d)2#;(e)、(f)3#;(g)、(h)4#

    Figure  9.   Circular tensile curves of the SLMed-NiTi alloys: (a), (b) 1#; (c), (d) 2#; (e), (f) 3#; (g), (h) 4#

    图  10   SLMed-NiTi合金各试样RSERSMERirrec随能量密度变化趋势图

    Figure  10.   Trend of RSE, RSEM, and Rirrec with the energy density of the SLMed-NiTi alloys

    表  1   选区激光熔化制备NiTi合金工艺参数

    Table  1   SLM process parameters of the NiTi alloys

    实验编号激光功率 / W扫描速率 / (mm·s‒1)粉末层厚 / μm扫描间距 / μm能量密度 / (J·mm‒3)
    1#80700308047.62
    2#100700308059.52
    3#80500308066.67
    4#100500308083.33
    下载: 导出CSV

    表  2   不同能量密度下制备SLMed-NiTi合金的临界应力、抗拉强度和断后伸长率

    Table  2   Critical stress, tensile strength, and plasticity of the SLMed-NiTi alloys formed under the different energy densities

    试样临界应力 / MPa抗拉强度 / MPa断后伸长率 / %
    1#430±3783±313.9±0.2
    2#377±2675±411.4±0.3
    3#302±3752±313.0±0.2
    4#144±4579±511.9±0.2
    下载: 导出CSV
  • [1]

    Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys, 1963, 34(5): 1475 DOI: 10.1063/1.1729603

    [2]

    Otsuka K, Ren X B. Recent developments in the research of shape memory alloys. Intermetallics, 1999, 7(5): 511 DOI: 10.1016/S0966-9795(98)00070-3

    [3]

    Moghaddam N S, Skoracki R, Miller M, et al. Three dimensional printing of stiffness-tuned, nitinol skeletal fixation hardware with an example of mandibular segmental defect repair. Procedia CIRP, 2016, 49: 45 DOI: 10.1016/j.procir.2015.07.027

    [4]

    Speirs M, Wang X, Baelen S V, et al. On the transformation behavior of NiTi shape-memory alloy produced by SLM. Shap Mem Superelasticity, 2016, 2: 310 DOI: 10.1007/s40830-016-0083-y

    [5]

    Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Des, 2014, 56: 1078 DOI: 10.1016/j.matdes.2013.11.084

    [6]

    Moghaddam N S, Jahadakbar A, Amerinatanzi A, et al. Recent advances in laser-based additive manufacturing // Laser-Based Additive Manufacturing of Metal Parts. Boca Raton, 2017: 1

    [7]

    Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci, 2016, 83: 630 DOI: 10.1016/j.pmatsci.2016.08.001

    [8]

    Hassan M R, Mehrpouya M, Dawood S. Review of the machining difficulties of nickel-titanium based shape memory alloys. Appl Mech Mater, 2014, 564: 533 DOI: 10.4028/www.scientific.net/AMM.564.533

    [9]

    Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review. Prog Mater Sci, 2012, 57(5): 911 DOI: 10.1016/j.pmatsci.2011.11.001

    [10]

    Wu M H. Fabrication of nitinol materials and components. Mater Sci Forum, 2002, 394-395: 285 DOI: 10.4028/www.scientific.net/MSF.394-395.285

    [11]

    Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct, 2014, 23(10): 104002 DOI: 10.1088/0964-1726/23/10/104002

    [12]

    Jahadakbar A, Moghaddam N S, Amerinatanzi A, et al. Finite element simulation and additive manufacturing of stiffness-matched NiTi fixation hardware for mandibular reconstruction surgery. Bioengineering, 2016, 3(4): 36 DOI: 10.3390/bioengineering3040036

    [13]

    Amerinatanzi A, Moghaddam N S, Ibrahim H, et al. Evaluating a NiTi implant under realistic loads: a simulation study // Proceedings of the ASME 2016 Smart Materials, Adaptive Structures and Intelligent Systems. Stowe, 2016: 28

    [14]

    Saedi S, Moghaddam N S, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater, 2018, 144: 552 DOI: 10.1016/j.actamat.2017.10.072

    [15]

    Moghaddam N S, Saghaian S E, Amerinatanzi A, et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting. Mater Sci Eng A, 2018, 724: 220 DOI: 10.1016/j.msea.2018.03.072

    [16]

    Dadbakhsh S, Speirs M, Kruth J P, et al. Influence of SLM on shape memory and compression behaviour of NiTi scaffolds. CIRP Ann, 2015, 64(1): 209 DOI: 10.1016/j.cirp.2015.04.039

    [17]

    Saedi S, Turabi A S, Andani M T, et al. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J Alloys Compd, 2016, 677: 204 DOI: 10.1016/j.jallcom.2016.03.161

    [18]

    Bormann T, Müller B, Schinhammer M, et al. Microstructure of selective laser melted nickel-titanium. Mater Charact, 2014, 94: 189 DOI: 10.1016/j.matchar.2014.05.017

    [19]

    Dadbakhsh S, Vrancken B, Kruth J P, et al. Texture and anisotropy in selective laser melting of NiTi alloy. Mater Sci Eng A, 2016, 650: 225 DOI: 10.1016/j.msea.2015.10.032

    [20]

    Moghaddam N S, Saedi S, Amerinatanzi A, et al. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci Rep, 2019, 9(1): 41 DOI: 10.1038/s41598-018-36641-4

    [21]

    Andani M T, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater, 2017, 68: 224 DOI: 10.1016/j.jmbbm.2017.01.047

    [22]

    Yang Y, Zhan J B, Li B, et al. Laser beam energy dependence of martensitic transformation in SLM fabricated NiTi shape memory alloy. Materialia, 2019, 6: 100305 DOI: 10.1016/j.mtla.2019.100305

    [23]

    Lu H Z, Yang C, Luo X, et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing. Mater Sci Eng A, 2019, 763: 1381

    [24]

    Lu H Z, Ma H W, Cai W S, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49. 6 shape memory alloy fabricated via selective laser melting. Acta Mater, 2021, 219: 117261 DOI: 10.1016/j.actamat.2021.117261

    [25]

    Ren D C, Zhang H B, Liu Y J, et al. Microstructure and properties of equiatomic Ti–Ni alloy fabricated by selective laser melting. Mater Sci Eng A, 2020, 771(35): 138586

    [26]

    Bimber Beth A, Hamilton R F, Keist J, et al. Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition. Mater Sci Eng A, 2016, 674: 125 DOI: 10.1016/j.msea.2016.07.059

    [27]

    Bagheri A, Mahtabi M J, Shamsaei N. Fatigue behavior and cyclic deformation of additive manufactured NiTi. J Mater Process Technol, 2018, 252: 440 DOI: 10.1016/j.jmatprotec.2017.10.006

    [28]

    Xiong Z W, Li Z H, Sun Z, et al. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect. J Mater Sci Technol, 2019, 35(10): 2238 DOI: 10.1016/j.jmst.2019.05.015

  • 期刊类型引用(5)

    1. 龙安平,熊江英,张高翔,肖磊,冯干江,郭建政,刘如铁. FGH4113A合金的双性能热处理组织与力学性能研究. 稀有金属材料与工程. 2024(04): 1042-1050 . 百度学术
    2. 武金江,赵广迪,姜昊源,孙乙轩,王博. 加热工艺对难变形高温合金U720Li中γ'相溶解及晶粒长大行为的影响. 稀有金属材料与工程. 2024(08): 2205-2216 . 百度学术
    3. 刘晓燕,张习祎,陈秀全,孙靖石,张博言,杨艳慧. 热挤压态FGH96合金热变形行为及变形机制研究. 稀有金属. 2024(08): 1108-1119 . 百度学术
    4. 洪震,张伟博,巩江涛,舒林森. 基于PSO–BP–GA混合算法的激光熔覆工艺多目标优化. 精密成形工程. 2023(07): 210-218 . 百度学术
    5. 朱磊,王易成,张皓,陈阳,江荣,宋迎东. 具有不同梯度晶粒组织的粉末高温合金疲劳小裂纹扩展原位观察. 粉末冶金技术. 2023(05): 420-426 . 本站查看

    其他类型引用(0)

图(11)  /  表(2)
计量
  • 文章访问数:  2725
  • HTML全文浏览量:  155
  • PDF下载量:  90
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-03-03
  • 录用日期:  2022-03-03
  • 网络出版日期:  2022-03-07
  • 刊出日期:  2022-10-27

目录

/

返回文章
返回